MHB If S=9999 prove we can find at least 3 students having the same score

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    students
AI Thread Summary
In a math test scenario with 201 students scoring from a set A={0,1,2,...,100}, the total scores (S) lead to conclusions about score distribution. For S=9999 and S=10101, it can be proven that at least three students must have the same score due to the limited range of possible scores and the number of students. When S=10000, if no three students share the same score, it necessitates one student scoring 100 and two scoring 0. Similarly, for S=10100 under the same condition, one student must score 0 while two students score 100. These findings illustrate the implications of score totals on student score distribution.
Albert1
Messages
1,221
Reaction score
0
A={0,1,2,3,4,5,--------,99,100}
201 students are attending a math test ,the score of each student can be
found from set A,if S represents the total scores of all 201 students,please answer
the following questions
(1) if S=9999 prove we can find at least 3 students having the same score
(2) if S=10101 prove we can also find at least 3 students having the same score
(3) if S=10000 and it is known no three students having the same score
,then there must have 1 student having score 100,and 2 students with scores 0
(4) if S=10100 and it is known no three students having the same score
,then there must have 1 student having score 0,and 2 students with scores 100
 
Mathematics news on Phys.org
Albert said:
A={0,1,2,3,4,5,--------,99,100}
201 students are attending a math test ,the score of each student can be
found from set A,if S represents the total scores of all 201 students,please answer
the following questions
(1) if S=9999 prove we can find at least 3 students having the same score
(2) if S=10101 prove we can also find at least 3 students having the same score
(3) if S=10000 and it is known no three students having the same score
,then there must have 1 student having score 100,and 2 students with scores 0
(4) if S=10100 and it is known no three students having the same score
,then there must have 1 student having score 0,and 2 students with scores 100
hint:
with the restriction :
no three students having the same score ,find min(S) and max(S)
 
My attempt:

The task is to assign scores ($0,1,.., ,100$) to $201$ students.

Using the hint from Albert, I proceed as follows:

Given the restriction: No three students have the same score, what is $S_{max}$ and $S_{min}$?

I can assign a score only twice: $2$ x $0$, $2$ x $1$, …, $2$ x $100$. Total sum is $10.100$.

This sum corresponds to exactly $202$ assignments, so we need to subtract just one single score. By taking

the largest and the smallest possible score, we easily find the max/min sum:

Thus:

$S_{min} = 10.100 – 100 = 10.000$ (*)

Subtracting $100$ from the total sum means, we have only one student with score $100$ in the test, and two

students with score $0$ (if not, there would only be $199$ students) – wen $S = S_{min}$. This answers problem (3).$S_{max}= 10.100 – 0 = 10.100$. (**).

Subtracting $0$ from the total sum means, we have only one student with score $0$ in the test and two students

with score $100$, - wen $S = S_{max}$. This answers problem (4).From (*) and (**) we can conclude, that: If $10.000 \le S \le 10.100$ then there are no three students having the same score.

in the group of 201 students. Or the complementary statement: Any sum, $S$, smaller than $S_{min}$

or greater than $S_{max}$ will contain at least a triple score.

This answers problem (1) and (2) In Alberts challenge, and we are done.
 
lfdahl said:
My attempt:

The task is to assign scores ($0,1,.., ,100$) to $201$ students.

Using the hint from Albert, I proceed as follows:

Given the restriction: No three students have the same score, what is $S_{max}$ and $S_{min}$?

I can assign a score only twice: $2$ x $0$, $2$ x $1$, …, $2$ x $100$. Total sum is $10.100$.

This sum corresponds to exactly $202$ assignments, so we need to subtract just one single score. By taking

the largest and the smallest possible score, we easily find the max/min sum:

Thus:

$S_{min} = 10.100 – 100 = 10.000$ (*)

Subtracting $100$ from the total sum means, we have only one student with score $100$ in the test, and two

students with score $0$ (if not, there would only be $199$ students) – wen $S = S_{min}$. This answers problem (3).$S_{max}= 10.100 – 0 = 10.100$. (**).

Subtracting $0$ from the total sum means, we have only one student with score $0$ in the test and two students

with score $100$, - wen $S = S_{max}$. This answers problem (4).From (*) and (**) we can conclude, that: If $10.000 \le S \le 10.100$ then there are no three students having the same score.

in the group of 201 students. Or the complementary statement: Any sum, $S$, smaller than $S_{min}$

or greater than $S_{max}$ will contain at least a triple score.

This answers problem (1) and (2) In Alberts challenge, and we are done.
Thanks lfdahl: well done
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top