I I'm slightly confused about the power spectrum of matter

AI Thread Summary
The discussion focuses on deriving the scalings for the matter power spectrum, specifically the behavior of PΔ(k) in different regimes. For super horizon modes (k < keq), the scaling is PΔ(k) ∼ k, while for sub horizon modes (k > keq), it scales as PΔ(k) ∼ k^{-3}. The Mészáros equation indicates that in radiation domination, Δm grows logarithmically with scale factor a, while in matter domination, it grows linearly. The derivation involves applying the Poisson equation and considering the evolution of perturbations through horizon crossing, leading to a final expression that captures the transition between early and late-time behaviors. Ultimately, the scalings are confirmed as PΔ ∼ k at early times and PΔ ∼ k^{-3} at late times.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
How do you get these scalings for the matter power spectrum?$$P_{\Delta}(k) \sim \begin{cases} k & \quad k < k_{\mathrm{eq}} \\ k^{-3} & \quad k >k_{\mathrm{eq}} \end{cases}$$(N.B. ##k_{\mathrm{eq}}## is the scale of modes that enter the horizon ##k \sim \mathcal{H}## at matter-radiation equality. So the first scaling is for comfortably super horizon modes and the second is for comfortably sub horizon modes).

Take the sub horizon case, i.e. modes where ##k \gg k_{\mathrm{eq}}##, as an example. From the Mészáros equation we know that for these modes we have ##\Delta_m \sim \log a## in radiation domination (early times) and ##\Delta_m \sim a## in matter domination (late times). How do I use this to deduce that ##P_{\Delta}(k) \sim k^{-3}##?
 
Space news on Phys.org
I've gotten an answer back -- on super horizon scales we know that ##\delta \sim \phi \sim \mathcal{R}##, and scale invariance of perturbations in ##\mathcal{R}## constrains ##P_{\mathcal{R}} \sim k^{n_s - 4}##, so by the Poisson equation:
$$\Delta \sim (k/\mathcal{H})^2 \phi_k \implies P_{\Delta} \big{|}_{\tau = \tau_i} \sim k^4 \tau_i^4 P_{\Phi} \sim k^{n_s}$$at some initial time ##\tau_i##. The perturbations evolve as ##\sim \tau^2## up until horizon crossing, so you have something like$$P_{\Delta} \sim (\tau/\tau_i)^4 P_{\Delta} \big{|}_{\tau = \tau_i} \sim k^{n_s}$$At horizon crossing, but still in radiation era, you have log growth, followed by ##\tau^2## growth again in the matter era. So the result is you pick up two more "transfer" factors:

$$P_{\Delta} = \left(\frac{\tau}{\tau_i}\right)^4 \left( 1 + \log{\frac{\tau_{eq}}{\tau_{cross}}} \right)^2 \left( \frac{\tau_{cross}}{\tau_i} \right)^4 P_{\Delta} \big{|}_{\tau = \tau_i} \sim (\log{k})^2 k^{n_s - 4}$$since at horizon crossing ##k \sim \mathcal{H} \sim \tau^{-1}## (so ##\tau_{cross} \sim k^{-1}##)

So taking ##n_s \approx 1##, you reproduce approximately the scalings ##P_{\Delta} \sim k## at early times and ##P_{\Delta} \sim k^{-3}## at late times.
 
Abstract The Event Horizon Telescope (EHT) has significantly advanced our ability to study black holes, achieving unprecedented spatial resolution and revealing horizon-scale structures. Notably, these observations feature a distinctive dark shadow—primarily arising from faint jet emissions—surrounded by a bright photon ring. Anticipated upgrades of the EHT promise substantial improvements in dynamic range, enabling deeper exploration of low-background regions, particularly the inner shadow...
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Title: Can something exist without a cause? If the universe has a cause, what caused that cause? Post Content: Many theories suggest that everything must have a cause, but if that's true, then what caused the first cause? Does something need a cause to exist, or is it possible for existence to be uncaused? I’m exploring this from both a scientific and philosophical perspective and would love to hear insights from physics, cosmology, and philosophy. Are there any theories that explain this?
Back
Top