B In higher dimensions, are there more than just rotations and displacements?

  • Thread starter Hiero
  • Start date
263
51
In 3D the most general motion of a rigid body consists of a displacement and a rotation.

In higher dimensions is this still the most general motion? Or are there unexpected ways of moving with more freedom?

One subtlety, for example, is that we would have to allow for multiple rotations since two rotations do not necessarily compose into a single rotation in dimensions higher than three.

Are there any other surprises, or is it just displacements and rotations all the way up?
 
33,384
9,107
Isn't every continuous change that keeps all distances and angles the same a displacement or rotation by definition?
You get more complex rotations.
 

Math_QED

Science Advisor
Homework Helper
1,202
400
You can get double rotations, for example.
 
263
51
Isn't every continuous change that keeps all distances and angles the same a displacement or rotation by definition?
You get more complex rotations.
I never thought of it in that definition, but I suppose that’s fitting! Is the reason for the word “continuous” just to exclude reflections?

What I had in mind by ‘rotation’ was a motion occurring in a plane with all lines orthogonal being unaffected. I now think this is called a “simple rotation,” at least in this Wikipedia page: https://en.m.wikipedia.org/wiki/Rotations_in_4-dimensional_Euclidean_space

You can get double rotations, for example.
I suppose double rotations are like a composition of simple rotations in independent planes (which can’t be reduced to a simple rotation) but I’m not sure if that’s all there is to it because I don’t find Wikipedia particularly readable.

So once we hit 6 dimension, since we can choose 3 mutually orthogonal planes, would we have ‘triple rotations’ possible?

Any other resources will be much appreciated!
(I kept getting computer science related search results...)

Thanks.
 

WWGD

Science Advisor
Gold Member
4,505
1,956
Are you considering isometries, or what types of transformations?
 
263
51
Are you considering isometries, or what types of transformations?
I’ve never heard of these. They preserve distance but not angles? Can I have an example maybe?

The image I had in mind when asking this question was a continuous transformation between two Cartesian bases. Specifically I was doing a classical rigid body dynamics problem, where we prefer to work with a (or the) principle basis, but we relate it to an inertial basis. I was just wondering what might be different in higher dimensions.

I just want to start a discussion or get some resources on higher dimensional ‘rigid’ motions.

Thanks.
 

Math_QED

Science Advisor
Homework Helper
1,202
400
I’ve never heard of these. They preserve distance but not angles? Can I have an example maybe?
An isometry of the Euclidean space ##\mathbb{R}^n## is a map that preserves the Euclidean norm. Since the inproduct can be written in terms of the norm, such an isometry also preserves angles.
 

Math_QED

Science Advisor
Homework Helper
1,202
400
Isn't every continuous change that keeps all distances and angles the same a displacement or rotation by definition?
You get more complex rotations.
Compose a non-trivial rotation and a non-trivial translation. This is an isometry (and therefore continuous). Thus this map preserves distance and angles. Yet this is not a rotation or displacement.
 
263
51
An isometry of the Euclidean space ##\mathbb{R}^n## is a map that preserves the Euclidean norm. Since the inproduct can be written in terms of the norm, such an isometry also preserves angles.
I see... I didn’t before realize that ##a\cdot b = (|a+b|^2-|a-b|^2)/4##

That’s good to know, thanks!
 
263
51
So once we hit 6 dimension, since we can choose 3 mutually orthogonal planes, would we have ‘triple rotations’ possible?
Yes.
This confused me because I kept thinking, in 6D we could decompose the space into two orthogonal 3D subspaces, and in each 3D subspace the rotations will compose into simple-rotations and so I thought that 6D would only require two simple rotations (a double rotation).

Of course this train of thought is silly because each of the 3D subspaces only contain 3 (independent) planes of rotation, giving 6 planes but in 6 dimensions we would expect 6choose2 = 15 planes of rotation. The 9 missing planes have one vector in each of the 3D subspaces.

A 6D basis has 15 ways to choose two basis elements which describe planes, but only 3 mutually orthogonal planes span the whole space.

Is the following true?
The composition of two simple rotations is another simple rotation if and only if the planes of rotation share (at least) a line.
 
263
51
Compose a non-trivial rotation and a non-trivial translation. This is an isometry (and therefore continuous). Thus this map preserves distance and angles. Yet this is not a rotation or displacement.
Do you have any resources or subject/book recommendations?
 
33,384
9,107
This confused me because I kept thinking, in 6D we could decompose the space into two orthogonal 3D subspaces, and in each 3D subspace the rotations will compose into simple-rotations and so I thought that 6D would only require two simple rotations (a double rotation).
You can have a rotation in the plane made out of the two rotation axes in their 3D subspaces. It will rotate things out of the 3D subspaces, of course.
 

Math_QED

Science Advisor
Homework Helper
1,202
400
Do you have any resources or subject/book recommendations?
Not really, I learned all this at my linear algebra course.
 

Want to reply to this thread?

"In higher dimensions, are there more than just rotations and displacements?" You must log in or register to reply here.

Related Threads for: In higher dimensions, are there more than just rotations and displacements?

Replies
5
Views
1K
  • Posted
Replies
7
Views
3K
Replies
13
Views
710
  • Posted
Replies
1
Views
2K
Replies
5
Views
1K
  • Posted
Replies
2
Views
1K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top