My question is perhaps as much about the philosophy of math as it is about the specific tools of math: is perpendicularity and rotation integral and fundamental to the concept of multiplication - in all number spaces?(adsbygoogle = window.adsbygoogle || []).push({});

As I understand it, the product of complex numbers x = (a, ib) and y = (c, id) can be calculated as:

( (ac-bd), i(ad+bc) )

I noticed that this expression uses a particular mixing of the real and imaginary components of x and y, and it includes a negation in the real part. And I understand that this negation is related to the square root of -1. I have noticed a similarity between the multiplication of complex numbers and the operation for finding the perpendicular of a 2D vector (x, y) as (-y, x). The other perpendicular is (y, -x). It appears that negation of one component is critical for calculating perpendicularity.

Is there a way to express the concept of multiplication in a general way such that the behaviors of complex numbers is consistent with that of real (1-dimensional) numbers? Or do these properties of perpendicularity, negation, and rotation apply only to the higher number spaces (complex, quaternion, octonian, etc)? Might there be higher-order behaviors in the higher-dimensioned number spaces that are supersets of rotation and perpendicularity that our 3D brains cannot visualize or even comprehend?

Finally, what higher-order principle dictates that multiplication in higher-order number spaces should involve rotational effects? Some philosophers of mathematics would argue that these techniques are an invention of humans - an extrapolation of the concept of multiplication of real numbers to higher dimensions, which is arbitrary (although extremely useful and fully-consistent with all other mathematical concepts and operations).

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# B Complex products: perpendicular vectors and rotation effects

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**