In the double slit experiment - what exactly is the measuring device?

In summary: But as we keep increasing the wavelength, the bands start separating, and finally they disappear. This is because the photons with a shorter wavelength just pass through the slit undisturbed while the photons with a longer wavelength scatter more and are detected. So, in the end, the photons that made it to the detector are those with a shorter wavelength.In summary, what the double slit experiment is is a way to measure the frequency of photons that go through a given slit. By changing the wavelength of the photons that are being emitted by the light source, it is possible to determine which slit the photon went through.
  • #1
Edi
177
1
In the double slit experiment - what exactly is the measuring device?
.. the have to measure witch slit the photon went trough - how do they do it?
- measuring anything means interacting with it. Changing it, really. So, isn't it obvious that interacting with the photon in any way will change its .. trajectory?
The photon doesn't hit all the probable lines in the screen at the same time. All it does is hits the screen one by one and making the interference pattern over time. - witch means that whatever is interacting with the photon creates the probability of the photon hitting one of the lines on the wall, with the highest chance at the middle one and decreasing with the number on the left or right.

For me - this doesn't mean that the photon is interacting with itself or something super weird. All the experiment proves is that interacting with the photon will.. well.. you know.. interact. Interacting in a specific way will produce a specific result. Dohh.

Soooo.. still - I am interested in what way do they actually measure witch slit it goes trough. (?)
 
Physics news on Phys.org
  • #2
Your basic question assumes that one can determine which slit the photon goes through. However the experiment shows that this question can't be answered. All we know is the pattern on the screen.
 
  • #3
mmm, but what heppens when one puts the "measuring device" at both slits?
... and stil - WHAT is the device?
 
  • #4
While I'm sure the experiment works with photons I had always heard it described using electrons with a cathode ray tube with the double slit inside the tube. The pattern would be seen on the phosphorescent screen.

Presumably a small wire could be placed next to one slit in order to detect the magnetic field as the electron passes by.

I believe the rule is that if it can be detected which slit the particle passes through, the interference pattern is destroyed. It shouldn't matter if you use one detector or two.
 
  • #5
Edi said:
In the double slit experiment - what exactly is the measuring device?
.. the have to measure witch slit the photon went trough - how do they do it?
- measuring anything means interacting with it. Changing it, really. So, isn't it obvious that interacting with the photon in any way will change its .. trajectory?
The photon doesn't hit all the probable lines in the screen at the same time. All it does is hits the screen one by one and making the interference pattern over time. - witch means that whatever is interacting with the photon creates the probability of the photon hitting one of the lines on the wall, with the highest chance at the middle one and decreasing with the number on the left or right.

For me - this doesn't mean that the photon is interacting with itself or something super weird. All the experiment proves is that interacting with the photon will.. well.. you know.. interact. Interacting in a specific way will produce a specific result. Dohh.

Soooo.. still - I am interested in what way do they actually measure witch slit it goes trough. (?)

I am not an expert in physics, but have read about double slit experiments from a semi-layman's viewpoint.

From what I have read, at least in case of the experiment conducted with electrons, I think they use some sort of a photo detector followed by a photo multipier to detect which slit the electron went through. This detector can be a light source which is emitting photons. When a charged particle such as an electron passes by, the light from the detector is scattered and we can observe a flash on one side or the other depending on which slit the electron passed through. Of course, when the detection is made, the interferance pattern vanishes. Just like little schoolchildren, you could say. The electrons are misbehaving, doing their strange dance and interfering with each other when you are not looking, and as soon as you turn around and look, they start behaving well.

One may argue that the act of watching the electrons disturbed them, and that’s why the interference went away. When the electron, on its way to the screen, interacted with the photons of the light from the detector, a jolt was given to the electron which caused the electrons not to go in some convoluted way and destroyed the interference. Fair enough. Let’s reduce the jolt given to the electron so that it is not disturbed. To do so we reduce the momentum, p, of the photon from the detector by reducing its frequency (i.e., increasing the wavelength).

Accordingly, we gradually increase the wavelength of the detector’s photons. Initially nothing happens; i.e. the interference bands continue to be not visible because the electrons have been disturbed due to the high energy of the photons. Then suddenly, when the wavelength is comparable to the spacing between the slits, the momentum seems to have been reduced considerably and the interference bands reappear on the screen. With great enthusiasm and expectation, we look at the detector to see which slits the electrons are coming from. What do we see? The detector is not functioning! The scattered light is no longer precise but is smeared out across the two slits and we can no longer tell which slit the electrons are passing through!

The disappearance and the reappearance of the interference bands can be explained using the wave nature of the detector’s photon. The precision with which the scattered flash (produced by the interaction of the electron with the photon) can be pinned down is inversely proportional to the wavelength (compared to the distance between the slits) of the photon from the detector. When the wavelength of the photon from the detector is small, many wavelengths fit between the two slits and we can tell precisely which slit the electron went through (but remember the interference bands vanish). When the wavelength is increased and becomes comparable to the distance between the slits, only one or two wavelengths fit between the slits and therefore the flash cannot be pinned down accurately and, just then, the interference bands reappears. Precisely when the interference bands reappears, we lose our ability to make a meaningful measurement about the electron’s path, and this is again nature’s ploy at work; the photon from the detector (or some such elementary particle) is the only tool available to track the electron’s path and it does not cooperate.

It is this disappearence and reappearence of the interference fringes, and the inherent inability to precisely say (with the available tools of nature/technology) through which slit the electron went through, that makes quantum physics so strange.

Source:
Richard Feynman, The Feynman Lectures on Physics, vol 3, Addison Wesley Longman, 1970
 
Last edited:
  • #6
Edi, without going into the measuring device it may help to consider the situation where you fire one electron at time at the double slit. Then repeat that experiment many times. Afterward, cover one slit and repeat the entire process (firing one electron at a time). I believe you can find the explanation and results of that experiment on Wikipedia (electron double slit) and I think that once you think it through you WILL end up thinking that there's something "weird" going on.
 
  • #7
Edi said:
In the double slit experiment - what exactly is the measuring device?
.. the have to measure witch slit the photon went trough - how do they do it?
- measuring anything means interacting with it. Changing it, really. So, isn't it obvious that interacting with the photon in any way will change its .. trajectory?
The photon doesn't hit all the probable lines in the screen at the same time. All it does is hits the screen one by one and making the interference pattern over time. - witch means that whatever is interacting with the photon creates the probability of the photon hitting one of the lines on the wall, with the highest chance at the middle one and decreasing with the number on the left or right.

For me - this doesn't mean that the photon is interacting with itself or something super weird. All the experiment proves is that interacting with the photon will.. well.. you know.. interact. Interacting in a specific way will produce a specific result. Dohh.

Soooo.. still - I am interested in what way do they actually measure witch slit it goes trough. (?)

We generally think of an experiment as consisting of a preparation procedure followed by a measurement of a specified observable. For the double slit experiment, roughly speaking, everything from, and also including, the particle source to the slits is the preparation apparatus Everything beyond the slits is the measuring device. The measuring device can be a fluorescent screen. Or, it could be a goniometer. The goniometer includes a particle detector chosen for the type of particle being detected. This is an oversimplification, but, hopefully, you get the idea.

You can determine which slit the particle went through by placing the screen right up against the slits. Or, for photons, you can place an x-polarizer over slit A and a y-polarizer over slit B. Now, the photons from slit A are all x-polarized and from slit B are all y-polarized. For such a configuration there is no interference when this experiment is repeated many times. If you want to know which slit a photon actually went through, then build a measuring device that measures polarization. Photons found to be x-polarized are from slit A and y-polarized photons are from slit B. For other types of particles, we can do the same with spin.

In classical physics, interactions change the particle’s trajectory, but, not so in quantum mechanics! In the quantum world, particles do not even have trajectories. We want particles to always behave in a classical way, which we “understand” so well. In a classical event, we always “know what is happening”. Unfortunately, we do not know “what is happening” in a quantum experiment. As far as I know, there is no underlying interaction that gives rise to quantum probabilities. No such thing is found in quantum theory and quantum experiments reveal nothing about any probability creating interaction. There is no classical-like explanation why this is so. Quantum mechanics is only about calculating the probabilities obtained in actual experiments. You are looking for a classical description for quantum events. Unfortunately, there is none.

Best wishes.
 

Question 1: What is the purpose of the measuring device in the double slit experiment?

The measuring device in the double slit experiment is used to determine the behavior of particles as they pass through the two slits. It helps to measure the position and momentum of the particles and observe how they interfere with each other.

Question 2: How does the measuring device affect the outcome of the experiment?

The measuring device can affect the outcome of the experiment by altering the behavior of the particles. This is known as the observer effect, where the act of measuring can change the behavior of what is being measured. Therefore, the presence of the measuring device can impact the results of the double slit experiment.

Question 3: What type of measuring device is typically used in the double slit experiment?

The type of measuring device used in the double slit experiment can vary, but it is usually a photon detector or a screen that can detect the particles passing through the slits.

Question 4: Can the measuring device be removed from the experiment?

Yes, the measuring device can be removed from the experiment. This would result in a different outcome as the behavior of the particles would no longer be observed or measured.

Question 5: Why is the measuring device important in the double slit experiment?

The measuring device is important in the double slit experiment because it allows us to gather data and observe the behavior of particles as they pass through the slits. This data is crucial in understanding the principles of quantum mechanics and how particles behave at a subatomic level.

Similar threads

Replies
5
Views
772
  • Quantum Physics
Replies
9
Views
766
  • Quantum Physics
Replies
14
Views
1K
  • Quantum Physics
Replies
18
Views
1K
  • Quantum Physics
2
Replies
36
Views
1K
Replies
32
Views
2K
Replies
60
Views
3K
Replies
3
Views
944
Replies
42
Views
1K
Replies
1
Views
630
Back
Top