MHB Indecomposable modules - example from Berrick and Keating

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading An Introduction to Rings and Modules With K-Theory in View by A.J. Berrick and M.E. Keating (B&K).

At present I am focussed on Chapter 2: Direct Sums and Short Exact Sequences.

Example 2.1.2 (i) on pages 38-39 reads as follows:https://www.physicsforums.com/attachments/2957
View attachment 2958In the above text B&K write:

" ... ... Clearly K is indecomposable as a module ... "

Question 1:

Can someone please explain exactly why this is the case? How can we demonstrate rigorously that K is indecomposable?

Question 2:

I have attempted to show that $$L \oplus N(x) = K^2$$.

Can someone please critique my effort ... is it basically OK ...

Proof is as follows:

Let $$a \in L \oplus N(x)$$

Then $$ a = l_1 + n_1 $$

$$= \left(\begin{array}{cc}1\\0\end{array}\right) k_1 + \left(\begin{array}{cc}x\\1\end{array}\right) k_2 $$ where $$k_1, k_2 \in K$$

$$= \left(\begin{array}{cc}k_1\\0\end{array}\right) + \left(\begin{array}{cc}{k_2 x} \\k_2\end{array}\right)$$

$$= \left(\begin{array}{cc}{k_1 + k_2 x}\\k_2\end{array}\right) \in K^2 $$

Now let $$a \in K^2$$; that is $$a = \left(\begin{array}{cc}{k_1}\\k_2\end{array}\right)$$ for some $$ k_1, k_2 \in K $$

Now take $$k_1 = c_1 + k_2 x $$ where $$k_1, c_1, k_2$$ and $$x \in K$$. (This is permissible and possible since $$K$$ is a field; $$c_1$$, of course, may be negative)

Then $$a = \left(\begin{array}{cc}{c_1 + k_2 x }\\k_2\end{array}\right)$$

Therefore $$a = \left(\begin{array}{cc}{c_1 }\\0\end{array}\right) + \left(\begin{array}{cc}{ k_2 x }\\k_2\end{array}\right) $$

Therefore $$ a = \left(\begin{array}{cc}{1 }\\0\end{array}\right) c_1 + \left(\begin{array}{cc}{ x }\\1\end{array}\right) k_2 \in L \oplus N(x) $$

Thus we conclude that $$L \oplus N(x) = K^2$$.

Can someone please confirm that this is OK ... or alternatively amend/critique the argument ...

Hope someone can help.

Peter

Notes: B&K definitions and notation

B&K's definition of the internal direct sum is as follows:

View attachment 2959
View attachment 2960

B&K then point out that the definition of internal direct sum can be restated as follows:

https://www.physicsforums.com/attachments/2961

Finally, just before the example above, B&K define decomposable module, complement and indecomposable module as follows:

https://www.physicsforums.com/attachments/2962
 
Last edited:
Physics news on Phys.org
Personally, I would write:

Let $c = k_1 - k_2x$, since $k_1,k_2,x$ are given.

You should recognize this as essentially the same example I gave in another thread, and expresses the same idea: direct sum decompositions are not unique.

So what one looks for, is "what invariants" can we find in direct sum decompositions. In this case, we have "essentially two kinds" of direct sum decompositons, corresponding to the following partitions of 2 (the dimension of $\mathcal{K}^2$):

2 = 2 + 0 <---this doesn't represent a "true" decomposition, one factor is trivial
2 = 1 + 1

Either one summand is a trivial subspace, or we have two subspaces of dimension one.

The condition (DS2) in this limited example, means that:

$\begin{pmatrix}k_1\\k_2 \end{pmatrix} \in L \cap N(x) \implies k_1 = k_2 = 0$.

That we must have $k_2 = 0$ is easy to see from membership in $L$. But if:

$\begin{pmatrix}k_1\\0 \end{pmatrix} = \begin{pmatrix}cx\\c\end{pmatrix}$

it is evident that $c = 0$, so $k_1 = 0x = 0$.

I point this out because you have shown that $\mathcal{K}^2 = L + N(x)$, and not that the sum is direct (it is not merely sufficient to show we can form any element of $\mathcal{K}^2$ as a sum of an element in $L$ and an element of $N(x)$, we must show this sum is uniquely determined).

Other than that, what you have is OK.

To answer your first question:

Suppose that $\mathcal{K} = M \oplus N$. Assume $M$ is non-trivial (non-zero), so we have $m \neq 0 \in M$.

Now $m \in \mathcal{K}$ since $M$ is a sub-module of $\mathcal{K}$. Since $\mathcal{K}$ is a field, we have:

$\dfrac{1}{m} \in \mathcal{K}$, and thus $\dfrac{1}{m}\cdot m = 1_{\mathcal{K}} \in M$ (since $M$ is a $\mathcal{K}$-module).

It thus follows that for any $k \in \mathcal{K}$, we have $k = k\cdot 1_{\mathcal{K}} \in M$.

Hence $M = \mathcal{K}$.

Since our sum is direct: $M \cap N = \{0_{\mathcal{K}}\} = \mathcal{K} \cap N = N$, so that $N$ is the 0-submodule.
 
Deveno said:
Personally, I would write:

Let $c = k_1 - k_2x$, since $k_1,k_2,x$ are given.

You should recognize this as essentially the same example I gave in another thread, and expresses the same idea: direct sum decompositions are not unique.

So what one looks for, is "what invariants" can we find in direct sum decompositions. In this case, we have "essentially two kinds" of direct sum decompositons, corresponding to the following partitions of 2 (the dimension of $\mathcal{K}^2$):

2 = 2 + 0 <---this doesn't represent a "true" decomposition, one factor is trivial
2 = 1 + 1

Either one summand is a trivial subspace, or we have two subspaces of dimension one.

The condition (DS2) in this limited example, means that:

$\begin{pmatrix}k_1\\k_2 \end{pmatrix} \in L \cap N(x) \implies k_1 = k_2 = 0$.

That we must have $k_2 = 0$ is easy to see from membership in $L$. But if:

$\begin{pmatrix}k_1\\0 \end{pmatrix} = \begin{pmatrix}cx\\c\end{pmatrix}$

it is evident that $c = 0$, so $k_1 = 0x = 0$.

I point this out because you have shown that $\mathcal{K}^2 = L + N(x)$, and not that the sum is direct (it is not merely sufficient to show we can form any element of $\mathcal{K}^2$ as a sum of an element in $L$ and an element of $N(x)$, we must show this sum is uniquely determined).

Other than that, what you have is OK.

To answer your first question:

Suppose that $\mathcal{K} = M \oplus N$. Assume $M$ is non-trivial (non-zero), so we have $m \neq 0 \in M$.

Now $m \in \mathcal{K}$ since $M$ is a sub-module of $\mathcal{K}$. Since $\mathcal{K}$ is a field, we have:

$\dfrac{1}{m} \in \mathcal{K}$, and thus $\dfrac{1}{m}\cdot m = 1_{\mathcal{K}} \in M$ (since $M$ is a $\mathcal{K}$-module).

It thus follows that for any $k \in \mathcal{K}$, we have $k = k\cdot 1_{\mathcal{K}} \in M$.

Hence $M = \mathcal{K}$.

Since our sum is direct: $M \cap N = \{0_{\mathcal{K}}\} = \mathcal{K} \cap N = N$, so that $N$ is the 0-submodule.

Thanks Deveno ... very helpful ...

You write:

" ... ... You should recognize this as essentially the same example I gave in another thread, and expresses the same idea: direct sum decompositions are not unique. ... ..."

Indeed ... how myopic of me! ... yes, see that now ... it is a great example as it does show clearly that direct sums are not unique! ...

Now just a clarification:

You write:

" ... ... The condition (DS2) in this limited example, means that:

$\begin{pmatrix}k_1\\k_2 \end{pmatrix} \in L \cap N(x) \implies k_1 = k_2 = 0$.

That we must have $k_2 = 0$ is easy to see from membership in $L$. But if:

$\begin{pmatrix}k_1\\0 \end{pmatrix} = \begin{pmatrix}cx\\c\end{pmatrix}$

it is evident that $c = 0$, so $k_1 = 0x = 0$.

I point this out because you have shown that $\mathcal{K}^2 = L + N(x)$, and not that the sum is direct (it is not merely sufficient to show we can form any element of $\mathcal{K}^2$ as a sum of an element in $L$ and an element of $N(x)$, we must show this sum is uniquely determined). .. ... "

... well yes ... really missed a very important point there!

BUT ... you write as if ...

" ... ...
$\begin{pmatrix}k_1\\k_2 \end{pmatrix} \in L \cap N(x) \implies k_1 = k_2 = 0$ means that the sum of an element in L and an element in N(x) is uniquely determined ... but why exactly does this follow ...?

Can you help?

Peter
 
Ok, suppose we have for a vector space:

$V = \langle U,W\rangle = U+W = \{u+w: u\in U,w \in W\}$.

If $u+w = u'+w'$ with $u \neq u'$ or $w \neq w'$ (so the sum is not unique), we have:

$u - u' = w' - w$.

Since the LHS in in $U$, and the RHS is in $W$, and at least one side is not 0 (so both sides must be), we have:

$u - u' = w - w' \in U \cap W \neq \{0\}$.

On the other hand, if $U \cap W = \{0\}$, then for any two sums for which:

$u + w = u' + w'$, we have $u - u' = w - w' = 0$, so that $u = u'$ and $w = w'$.

I think this was addressed in another thread.
 
Deveno said:
Ok, suppose we have for a vector space:

$V = \langle U,W\rangle = U+W = \{u+w: u\in U,w \in W\}$.

If $u+w = u'+w'$ with $u \neq u'$ or $w \neq w'$ (so the sum is not unique), we have:

$u - u' = w' - w$.

Since the LHS in in $U$, and the RHS is in $W$, and at least one side is not 0 (so both sides must be), we have:

$u - u' = w - w' \in U \cap W \neq \{0\}$.

On the other hand, if $U \cap W = \{0\}$, then for any two sums for which:

$u + w = u' + w'$, we have $u - u' = w - w' = 0$, so that $u = u'$ and $w = w'$.

I think this was addressed in another thread.

Thanks Deveno ... your help has been extensive and is much appreciated ... just now working through all posts again! ... thanks to you and Euge, I now have a much clearer picture of direct sums and products ... but do need to review your posts again ...

Thanks so much ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...

Similar threads

Replies
19
Views
3K
Replies
10
Views
2K
Replies
14
Views
2K
Replies
3
Views
1K
Replies
9
Views
1K
Back
Top