MHB Indefinite integral in division form

Click For Summary
The discussion centers on the challenge of solving the integral $$\int \frac{2}{x - b \frac{x^{m - n + 1}}{(-x + 1)^m}} \, dx$$. The user attempted to simplify the integral but encountered difficulties with the resulting expression, particularly with the integral $$\int \frac{1 + b \frac{x^{m - n}}{(-x + 1)^m}}{x(1 - b \frac{x^{m - n}}{(-x + 1)^m})} \, dx$$. Despite various substitution attempts, the integral remains unsolved. The user seeks guidance on potential errors in their approach and alternative methods for solving the integral. Context for the integral's origin is also requested to enhance understanding.
Elina_Gilbert
Messages
1
Reaction score
0
I have the following integration -

$$\int \frac{2}{x - b \frac{x^{m - n + 1}}{(-x + 1)^m}} \, dx $$

To solve this I did the following -
$$\int \frac{1 - b \frac{x^{m - n}}{(-x + 1)^m}+1 + b \frac{x^{m - n}}{(-x + 1)^m}}{x(1 - b \frac{x^{m - n}}{(-x + 1)^m})} \, dx $$

Which gives me -

$$log(x) + C+ \int \frac{1 + b \frac{x^{m - n}}{(-x + 1)^m}}{x(1 - b \frac{x^{m - n}}{(-x + 1)^m})} \, dx $$

No matter what substitution I do, I couldn't solve the integral -

$$\int \frac{1 + b \frac{x^{m - n}}{(-x + 1)^m}}{x(1 - b \frac{x^{m - n}}{(-x + 1)^m})} \, dx $$

Can anyone please suggest what I did wrong? Please suggest me another method to solve this?
 
Physics news on Phys.org
May I ask what context this integral comes from?
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K