Independence of Complex Fields?

Click For Summary
The discussion centers on the independence of a field and its complex conjugate, questioning whether they are truly independent or inherently linked. While one is the conjugate of the other, path integrals suggest they can take on non-conjugate values, yet the measure can be expressed in terms of two real fields. Weinberg's QFT text indicates that in Euclidean space, the field and its conjugate should be treated as independent. The resolution of this independence appears to depend on the context of Minkowski versus Euclidean space. Sidney Coleman's work illustrates that while the complex scalar can be divided into independent real and imaginary parts, varying the scalar and its conjugate ultimately leads to equivalent results.
geoduck
Messages
257
Reaction score
2
Are a field and its complex conjugate independent? It seems like they're not, as one is the complex conjugate of the other, so if you have one, you know the other.

However, it seems in path integrals, you integrate over the field and its conjugate, so they can take on values that are not the complex conjugate of each other. But you can write the measure in terms of two real fields, so it would seem that in the integrand of a path integral, the field and its conjugate will always take on values that are the complex conjugate of each other!

Furthermore, Weinberg mentions in his QFT book that in Euclidean space, the field and its conjugate must be treated as independent.

So does the answer to the question of whether the field and its complex conjugate are independent of each other depend on Minkowski or Euclidean space?
 
Physics news on Phys.org
Sidney Coleman proves this in the section starting on page 53 in these notes: http://arxiv.org/abs/1110.5013 . He originally goes through and divides the complex scalar into real and imaginary parts which he treats independently, but then shows that varying the scalar and its conjugate is equivalent. You can think of it as a simple linear transformation of treating the real and imaginary parts as independent.
 
  • Like
Likes vanhees71 and atyy
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 8 ·
Replies
8
Views
809
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K