Undergrad Indeterminate Limit: Evaluating ##\displaystyle \lim_{a \to 0^+} a^2 \log a##

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Limit
Mr Davis 97
Messages
1,461
Reaction score
44
##\displaystyle \lim_{a \to 0^+} a^2 \log a = 0 \cdot (- \infty)##, which is an indeterminate form.

So ##\displaystyle \lim_{a \to 0^+} a^2 \log a = \lim_{a \to 0^+} \frac{\log a}{a^{-2}} = \lim_{a \to 0^+} \frac{\frac{1}{a}}{(-2)a^{-3}} = -\frac{1}{2}\lim_{a \to 0^+} a^2 = 0##.

Is this correct?
 
Physics news on Phys.org
Yes. I guess you are learning about Hospital's rule.
 
  • Like
Likes Mr Davis 97

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K