Graduate Index-Free Expressions & Unique Metric-Compatible Connections

  • Thread starter Thread starter Shirish
  • Start date Start date
  • Tags Tags
    Expressions
Click For Summary
The discussion centers on the interpretation of a specific equation relating torsion-free covariant derivative operators on a manifold and the uniqueness of the derivative that preserves the metric. Key points include the challenge of expressing certain terms in index-free notation, particularly how the contraction of the first term operates and why the equation does not apply to other second-rank covariant tensors unless they are covariantly constant. The uniqueness of the derivative is linked to the condition that the symmetric part of the connection tensor vanishes, specifically ##C_{(\alpha\beta)\mu}=0##, which is derived from the symmetry of the connection's indices. Overall, the conversation highlights the complexities of tensor notation and the conditions under which certain mathematical properties hold.
Shirish
Messages
242
Reaction score
32
There are three doubts, but all are from the same section and closely related so I thought I'll ask in one post.

I'm studying about connections and came across a quote. Just for context it references this equation relating any two torsion-free covariant derivative operators on a manifold: $$(\nabla_{\mu}-\nabla'_{\mu})T^{\alpha_1\ldots\alpha_k}_{\beta_1\ldots\beta_l}=\sum_{i=1}^k C^{\alpha_i}_{\mu\nu}T^{\alpha_1\ldots\alpha_{i-1}\nu\alpha_{i+1}\ldots\alpha_k}_{\beta_1\ldots\beta_l}-\sum_{j=1}^lC^{\nu}_{\mu\beta_j}T^{\alpha_1\ldots\alpha_k}_{\beta_1\ldots\beta_{j-1}\nu\beta_{j+1}\ldots\beta_l}$$
We show that for ##g_{\alpha\beta}## a given metric field on (a smooth manifold ##M##), there is a unique torsion-free derivative satisfying ##\nabla_{\mu}g_{\alpha\beta}=0##. We start by noting (from the above equation) that $$(\nabla_{\mu}-\nabla'_{\mu})g_{\alpha\beta}=-C^{\nu}_{\ \ \mu\alpha}g_{\nu\beta}-C^{\nu}_{\ \ \mu\beta}g_{\nu\alpha}=-(C_{\ \beta\mu\alpha}+C_{\ \alpha\mu\beta})=-2C_{(\alpha\beta)\mu}$$ where we've lowered an index (This equation applies to the metric tensor and not a general second-rank covariant tensor) and used the symmetry of ##C_{\alpha\beta\gamma}## in the second and third indices (no-torsion requirement)
1. I'm not sure how to interpret the contraction of the first term on the LHS. ##\mathbf{C}## is supposed to eat one covector and two vectors. How can it "partially eat" one covariant part of the tensor ##\mathbf{g}## (the index ##i##)? Maybe my confusion could be resolved if I knew how to express the equation $$-C^{\nu}_{\ \ \mu\alpha}g_{\nu\beta}=-C_{\ \beta\mu\alpha}$$ in index-free notation. For example, I know that ##f_iX^i## can be written in index-free notation as ##\mathbf{f}(\mathbf{X})##, where ##\mathbf{f}## is a covector and ##\mathbf{X}## is a vector. Similarly ##g_{ij}X^iY^j## means ##\mathbf{g}(\mathbf{X},\mathbf{Y})##. I also suspect that something like ##C^i_{\ \ jk}\omega_{i}## can be written as ##\mathbf{C}(\mathbf{\omega}, \cdot, \cdot)##, where ##\mathbf{\omega}## has filled up the covector slot and we're left with a ##(0,2)## tensor. But I can't figure out how something like ##C^{\nu}_{\ \ \mu\alpha}g_{\nu\beta}## is supposed to represented in a index-free way.

2. Why doesn't the quoted equation work for any other second-rank covariant tensor?

3. Then it goes on to say:
Uniqueness of ##\nabla_{\mu}g_{\alpha\beta}## is implied by ##C_{(\alpha\beta)\mu}=0##, which combined with the no-torsion requirement implies ##C^{\alpha}_{\ \ \beta\gamma}=0##
I didn't understand the above line. Where did ##C_{(\alpha\beta)\mu}=0## come from? The book mentions in a prior paragraph that covariant derivatives can differ by tensors ##C^{\alpha}_{\ \ \beta\gamma}##, but that's all it says about the ##\gamma## index. I'm not sure how ##C^{\alpha}_{\ \ \beta\gamma}=0## follows.
 
Last edited:
Physics news on Phys.org
Shirish said:
But I can't figure out how something like ##C^{\nu}_{\ \ \mu\alpha}g_{\nu\beta}## is supposed to represented in a index-free way.
I don't know of any neat way to express it. This is one of the reasons I prefer index-full notation.

2. Why doesn't the quoted equation work for any other second-rank covariant tensor?
It does, provided the "other second-rank covariant tensor" is also covariantly constant, like the metric.

3. Where did ##C_{(\alpha\beta)\mu}=0## come from? The book mentions in a prior paragraph that covariant derivatives can differ by tensors ##C^{\alpha}_{\ \ \beta\gamma}##, but that's all it says about the ##\gamma## index. I'm not sure how ##C^{\alpha}_{\ \ \beta\gamma}=0## follows.
##C## was assumed symmetric in its 2nd and 3rd indices. So, inserting an extra step in your earlier equation, it becomes: $$ [\dots ] ~=~ -(C_{\ \beta\mu\alpha}+C_{\ \alpha\mu\beta})~=~ -(C_{\ \beta\alpha\mu}+C_{\ \alpha\beta\mu}) ~=~ -2C_{(\alpha\beta)\mu} ~.$$
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
6K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K