MHB Index of Positivity in Quadratic Form: $f(X) = \sum^{n}_{i=1} x_{2}^{i}$

  • Thread starter Thread starter A.Magnus
  • Start date Start date
  • Tags Tags
    Index
A.Magnus
Messages
138
Reaction score
0
I am working on this problem: Show that the index of positivity is $n$ for this quadratic form:

$$f: \mathbb R^n \rightarrow \mathbb R, \ f(X) = \sum^{n}_{i=1} x_{2}^{i} + \frac{1}{n} \sum_{i \neq j}x_ix_j.$$

Here is a solution I got from other sources: Since the index of quadratic form is the number of positive terms (or square terms) of its canonical form, and since the canonical form of $f$ is

$$\big(x_1^2 + x_2^2 + ... + x_n^2 \big)+ \frac{1}{n}\big((x_1x_2 + x_1x_3 + ... + x_1x_n) + (x_2x_3 + x_2x_4 + ... + x_2x_n) + ... \big),$$

therefore the index is $n$.

I have strong doubt that this solution is correct. Is this correct? How do I have to go about if this is wrong? Thank you for your gracious help and time. ~MA
 
Last edited:
Physics news on Phys.org
MaryAnn said:
I am working on this problem: Show that the index of positivity is $n$ for this quadratic form:

$$f: \mathbb R^n \rightarrow \mathbb R, \ f(X) = \sum^{n}_{i=1} x_{2}^{i} + \frac{1}{n} \sum_{i \neq j}x_ix_j.$$

Here is a solution I got from other sources: Since the index of quadratic form is the number of positive terms (or square terms) of its canonical form, and since the canonical form of $f$ is

$$\big(x_1^2 + x_2^2 + ... + x_n^2 \big)+ \frac{1}{n}\big((x_1x_2 + x_1x_3 + ... + x_1x_n) + (x_2x_3 + x_2x_4 + ... + x_2x_n) + ... \big),$$

therefore the index is $n$.

I have strong doubt that this solution is correct. Is this correct? How do I have to go about if this is wrong? Thank you for your gracious help and time. ~MA

Hey MaryAnn! ;)

I didn't answer yet because I'm not familiar with this index of positivity, and I couldn't find any references to it.
Either way, with the definition you gave, it seems to me that you applied it correctly. (Nod)
 
I like Serena said:
Hey MaryAnn! ;)

I didn't answer yet because I'm not familiar with this index of positivity, and I couldn't find any references to it.
Either way, with the definition you gave, it seems to me that you applied it correctly. (Nod)

Thank you. Let me know if you find any reference to this one. Thanks again for your gracious help. ~MA
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top