- #1

- 15

- 0

## Main Question or Discussion Point

Hey everyone,

When I first started learning calculus, I was taught that the first thing to do when asked to evaluate a limit as x -> a of f(x) is to evaluate f(a). If f(a) is of the form 0/0, then no conclusion can be made about the limit, and the expression needs to be manipulated by factoring, rationalizing, etc. before a conclusion can be made. If f(a) i of the form k/0, where a is a real number and k≠0, then the limit doesn't exist. Finally, if f(a) = k, where k is a real number, then the limit exists and is equal to k. But high school calculus only dealt with functions that behave nicely: polynomials, rational functions, trig functions, exponential/log.

My question is this: does this "method" of discerning the nature of a limit work for all f(x)?

When I first started learning calculus, I was taught that the first thing to do when asked to evaluate a limit as x -> a of f(x) is to evaluate f(a). If f(a) is of the form 0/0, then no conclusion can be made about the limit, and the expression needs to be manipulated by factoring, rationalizing, etc. before a conclusion can be made. If f(a) i of the form k/0, where a is a real number and k≠0, then the limit doesn't exist. Finally, if f(a) = k, where k is a real number, then the limit exists and is equal to k. But high school calculus only dealt with functions that behave nicely: polynomials, rational functions, trig functions, exponential/log.

My question is this: does this "method" of discerning the nature of a limit work for all f(x)?