Inequality c≤√[(x−a^2+(y−b)^2+(z−c)^2]+√(x2+y2+z2)

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$ has been discussed in the context of proving its validity without using norms. Participants emphasized the need for a high school-level approach to the proof, suggesting simpler geometric interpretations and algebraic manipulations. The discussion highlights the importance of providing a solution when posing problems in the forum, adhering to community guidelines.

PREREQUISITES
  • Understanding of basic algebra and geometry
  • Familiarity with the concept of inequalities
  • Knowledge of the distance formula in three-dimensional space
  • Ability to manipulate square roots and quadratic expressions
NEXT STEPS
  • Research geometric interpretations of inequalities in Euclidean space
  • Explore algebraic techniques for proving inequalities
  • Study the triangle inequality and its applications
  • Learn about distance metrics and their properties in mathematics
USEFUL FOR

Students, educators, and math enthusiasts interested in understanding and proving geometric inequalities, particularly at the high school level.

solakis1
Messages
407
Reaction score
0
Prove:

$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
 
Mathematics news on Phys.org
solakis said:
Prove:

$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$

This comes from law of triangle sides in 3 dimensions

distance from origin to (a,b,c) < distance from (x,y,z) to (a,b,c) + distance from origin to (x,y,z) and equal if (x,y,z) is between (0,0) and (a,b,c ) and in the line between the 2
 
My solution:

Avoiding geometry notions, and instead using only the axioms of norm from linear algebra, and the fact that the Euclidean norm is actually a norm.

Let $\mathbf a = (a,b,c)$ and $\mathbf x = (x,y,z)$.
Then:
\begin{aligned}\sqrt{a^2+b^2+c^2} = \|\mathbf a\| = \|(\mathbf a - \mathbf x) + \mathbf x\|
\le \|\mathbf a - \mathbf x\| + \|\mathbf x\|
&= \|\mathbf x - \mathbf a\| + \|\mathbf x\| \\
&= \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} + \sqrt{x^2+y^2+z^2}
\end{aligned}
 
I like Serena said:
My solution:

Avoiding geometry notions, and instead using only the axioms of norm from linear algebra, and the fact that the Euclidean norm is actually a norm.

Let $\mathbf a = (a,b,c)$ and $\mathbf x = (x,y,z)$.
Then:
\begin{aligned}\sqrt{a^2+b^2+c^2} = \|\mathbf a\| = \|(\mathbf a - \mathbf x) + \mathbf x\|
\le \|\mathbf a - \mathbf x\| + \|\mathbf x\|
&= \|\mathbf x - \mathbf a\| + \|\mathbf x\| \\
&= \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} + \sqrt{x^2+y^2+z^2}
\end{aligned}

Without using the norm what solution would you suggest, i mean a high school solution
 
solakis said:
Without using the norm what solution would you suggest, i mean a high school solution

When you post a problem here in our "Challenge Questions and Puzzles" forum, it is expected that you have a solution to the problem already (read http://mathhelpboards.com/challenge-questions-puzzles-28/guidelines-posting-answering-challenging-problem-puzzle-3875.html)...what solution do you have?
 
A high school solution is the following:
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$ $$\Longleftrightarrow\sqrt{a^2+b^2+c^2}-\sqrt{x^2+y^2+z^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2} $$

And by squaring and cancelling equal terms on both sides repeatedly we end up with the equivalent formula:

$$(a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axzc)+(b^2z^2+c^2y^2-2byzc)\geq 0$$, which is true hence the initial formula is true
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K