solakis1
- 407
- 0
Prove:
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
The inequality $$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$ has been discussed in the context of proving its validity without using norms. Participants emphasized the need for a high school-level approach to the proof, suggesting simpler geometric interpretations and algebraic manipulations. The discussion highlights the importance of providing a solution when posing problems in the forum, adhering to community guidelines.
PREREQUISITESStudents, educators, and math enthusiasts interested in understanding and proving geometric inequalities, particularly at the high school level.
solakis said:Prove:
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
I like Serena said:My solution:
Avoiding geometry notions, and instead using only the axioms of norm from linear algebra, and the fact that the Euclidean norm is actually a norm.
Let $\mathbf a = (a,b,c)$ and $\mathbf x = (x,y,z)$.
Then:
\begin{aligned}\sqrt{a^2+b^2+c^2} = \|\mathbf a\| = \|(\mathbf a - \mathbf x) + \mathbf x\|
\le \|\mathbf a - \mathbf x\| + \|\mathbf x\|
&= \|\mathbf x - \mathbf a\| + \|\mathbf x\| \\
&= \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} + \sqrt{x^2+y^2+z^2}
\end{aligned}
solakis said:Without using the norm what solution would you suggest, i mean a high school solution