solakis1
- 407
- 0
Prove:
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
solakis said:Prove:
$$\sqrt{a^2+b^2+c^2}\leq\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}+\sqrt{x^2+y^2+z^2}$$
I like Serena said:My solution:
Avoiding geometry notions, and instead using only the axioms of norm from linear algebra, and the fact that the Euclidean norm is actually a norm.
Let $\mathbf a = (a,b,c)$ and $\mathbf x = (x,y,z)$.
Then:
\begin{aligned}\sqrt{a^2+b^2+c^2} = \|\mathbf a\| = \|(\mathbf a - \mathbf x) + \mathbf x\|
\le \|\mathbf a - \mathbf x\| + \|\mathbf x\|
&= \|\mathbf x - \mathbf a\| + \|\mathbf x\| \\
&= \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} + \sqrt{x^2+y^2+z^2}
\end{aligned}
solakis said:Without using the norm what solution would you suggest, i mean a high school solution