MHB Inequality Challenge: Prove 1/44 > 1/1999

Click For Summary
The discussion focuses on proving the inequality $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$ using mathematical induction and manipulation of products. The product $$\frac{1}{2}\frac{3}{4}\cdots\frac{1997}{1998}$$ is denoted as x, leading to the conclusion that $$x^2<\frac{1}{1999}$$ implies $$x<\frac{1}{44}$$. An inductive proof is provided to show that $$P_n > \frac{1}{2n+1}$$ holds for all n, confirming the second part of the inequality. The thread effectively demonstrates the relationships between the fractions and establishes the required inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$
 
Mathematics news on Phys.org
For the first one,
$$\left(\frac{1+1}{2+1}\right)\cdots\Big(\frac{1997+1}{1998+1}\Big)>\Big(\frac{1}{2}\Big)\Big(\frac{3}{4}\Big)\Big(\frac{5}{6}\Big)\cdots\Big(\frac{1997}{1998}\Big)
$$
$$\Big(\frac{2}{3}\Big)\Big(\frac{4}{5}\Big)\cdots \Big(\frac{1998}{1999}\Big)>\Big(\frac{1}{2}\Big).\Big(\frac{3}{4}\Big)\Big(\frac{5}{6}\Big)\cdots\Big(\frac{1997}{1998}\Big)$$
$\text{let,}$
$$\frac{1}{2}\frac{3}{4}\frac{5}{6}\cdots\frac{1997}{1998}=x$$
$$\frac{1}{x\cdot1999}>x$$
$$x^2<\frac{1}{1999}$$
$$x<\frac{1}{44+x}$$
$\text{hence,}$
$$x<\frac{1}{44}$$
 
Last edited:
anemone said:
Show that $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$
The other inequality is easily proved by induction. Let $P_n = \Bigl(\dfrac{1}{2}\Bigr)\Bigl(\dfrac{3}{4}\Bigr) \cdots \Bigl(\dfrac{2n-1}{2n}\Bigr).$ Then $P_n > \dfrac{1}{2n+1}$.

Proof. The base case $n=1$ certainly holds. Assuming the inductive hypothesis, $$P_{n+1} = P_n\Bigl(\dfrac{2n+1}{2n+2}\Bigr) > \dfrac{1}{2n+1}\Bigl(\dfrac{2n+1}{2n+2}\Bigr) = \dfrac{1}{2n+2} > \dfrac{1}{2n+3},$$ which completes the inductive step.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K