MHB Inequality Challenge: Prove 1/44 > 1/1999

Click For Summary
The discussion focuses on proving the inequality $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$ using mathematical induction and manipulation of products. The product $$\frac{1}{2}\frac{3}{4}\cdots\frac{1997}{1998}$$ is denoted as x, leading to the conclusion that $$x^2<\frac{1}{1999}$$ implies $$x<\frac{1}{44}$$. An inductive proof is provided to show that $$P_n > \frac{1}{2n+1}$$ holds for all n, confirming the second part of the inequality. The thread effectively demonstrates the relationships between the fractions and establishes the required inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$
 
Mathematics news on Phys.org
For the first one,
$$\left(\frac{1+1}{2+1}\right)\cdots\Big(\frac{1997+1}{1998+1}\Big)>\Big(\frac{1}{2}\Big)\Big(\frac{3}{4}\Big)\Big(\frac{5}{6}\Big)\cdots\Big(\frac{1997}{1998}\Big)
$$
$$\Big(\frac{2}{3}\Big)\Big(\frac{4}{5}\Big)\cdots \Big(\frac{1998}{1999}\Big)>\Big(\frac{1}{2}\Big).\Big(\frac{3}{4}\Big)\Big(\frac{5}{6}\Big)\cdots\Big(\frac{1997}{1998}\Big)$$
$\text{let,}$
$$\frac{1}{2}\frac{3}{4}\frac{5}{6}\cdots\frac{1997}{1998}=x$$
$$\frac{1}{x\cdot1999}>x$$
$$x^2<\frac{1}{1999}$$
$$x<\frac{1}{44+x}$$
$\text{hence,}$
$$x<\frac{1}{44}$$
 
Last edited:
anemone said:
Show that $$\frac{1}{44}>\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\cdots\left( \frac{1997}{1998}\right)>\frac{1}{1999}$$
The other inequality is easily proved by induction. Let $P_n = \Bigl(\dfrac{1}{2}\Bigr)\Bigl(\dfrac{3}{4}\Bigr) \cdots \Bigl(\dfrac{2n-1}{2n}\Bigr).$ Then $P_n > \dfrac{1}{2n+1}$.

Proof. The base case $n=1$ certainly holds. Assuming the inductive hypothesis, $$P_{n+1} = P_n\Bigl(\dfrac{2n+1}{2n+2}\Bigr) > \dfrac{1}{2n+1}\Bigl(\dfrac{2n+1}{2n+2}\Bigr) = \dfrac{1}{2n+2} > \dfrac{1}{2n+3},$$ which completes the inductive step.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K