MHB Inequality Challenge: Prove $\ge 0$ for All $a,b,c$

Click For Summary
The inequality $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ is proposed for proof with positive real numbers $a$, $b$, and $c$. The discussion emphasizes the need to demonstrate that each term in the sum is non-negative. Participants engage in exploring various approaches, including algebraic manipulations and potential applications of known inequalities. The goal is to establish the validity of the inequality under the given conditions. The thread highlights the collaborative effort to solve this mathematical challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ holds for all positive real $a,\,b$ and $c$.
 
Mathematics news on Phys.org
anemone said:
Prove $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ holds for all positive real $a,\,b$ and $c$.
my solution:
by using $AP\geq GP$ we have:

$\dfrac{a-\sqrt {bc}}{a+2b+2c}+\dfrac{b-\sqrt {ca}}{b+2c+2a}+\dfrac{c-\sqrt {ab}}{c+2a+2b}>
\\

\dfrac{a-{(b+c)/2}}{2a+2b+2c}+\dfrac{b-{(c+a)/2}}{2a+2b+2c}+\dfrac{c-{(a+b)/2}}{2a+2b+2c}=
0\\$
equality holds when $a=b=c$
 
Last edited:
Albert said:
my solution:
by using $AP\geq GP$ we have:

$\dfrac{a-\sqrt {bc}}{a+2b+2c}+\dfrac{b-\sqrt {ca}}{b+2c+2a}+\dfrac{c-\sqrt {ab}}{c+2a+2b}>
\\

\dfrac{a-{(b+c)/2}}{2a+2b+2c}+\dfrac{b-{(c+a)/2}}{2a+2b+2c}+\dfrac{c-{(a+b)/2}}{2a+2b+2c}=
0\\$
equality holds when $a=b=c$

Thanks Albert for participating!

Here is my solution:

$$\begin{align*}\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}&\ge \frac{a-\frac{b}{2}-\frac{c}{2}}{a+2b+2c}+\frac{b-\frac{c}{2}-\frac{a}{2}}{b+2c+2a}+\frac{c-\frac{b}{2}-\frac{a}{2}}{c+2a+2b}\\&\ge \frac{a-\frac{b}{2}-\frac{c}{2}}{3\sqrt{a^2+b^2+c^2}}+\frac{b-\frac{c}{2}-\frac{a}{2}}{3\sqrt{a^2+b^2+c^2}}+\frac{c-\frac{b}{2}-\frac{a}{2}}{3\sqrt{a^2+b^2+c^2}}\\&= \frac{1}{3\sqrt{a^2+b^2+c^2}}\left(a-\frac{b}{2}-\frac{c}{2}+b-\frac{c}{2}-\frac{a}{2}+c-\frac{b}{2}-\frac{a}{2}\right)\\&=\frac{1}{3\sqrt{a^2+b^2+c^2}}\left(1+b+c-a-b-c\right)\\&=0\,\,\,\,\text{Q.E.D.}\end{align*}$$

The first step follows from the AM-GM inequality that says $$\frac{b+c}{2}\ge \sqrt{bc}$$.

The second step follows from the Cauchy-Schwarz inequality that tells $$a+2b+2c\le\sqrt{1+2^2+2^2}\sqrt{a^2+b^2+c^2}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
866
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K