Inequality Challenge: Prove $\ge 0$ for All $a,b,c$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The inequality $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ is proven to hold for all positive real numbers $a$, $b$, and $c$. The proof involves manipulating the terms to show that each fraction is non-negative under the given conditions. The discussion emphasizes the importance of understanding the properties of square roots and their relationships to the variables involved.

PREREQUISITES
  • Understanding of inequalities in algebra
  • Familiarity with square root properties
  • Basic knowledge of positive real numbers
  • Experience with mathematical proofs
NEXT STEPS
  • Study advanced inequality techniques in algebra
  • Explore the Cauchy-Schwarz inequality and its applications
  • Learn about symmetric sums and their properties
  • Investigate other inequalities involving square roots
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ holds for all positive real $a,\,b$ and $c$.
 
Mathematics news on Phys.org
anemone said:
Prove $$\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}\ge 0$$ holds for all positive real $a,\,b$ and $c$.
my solution:
by using $AP\geq GP$ we have:

$\dfrac{a-\sqrt {bc}}{a+2b+2c}+\dfrac{b-\sqrt {ca}}{b+2c+2a}+\dfrac{c-\sqrt {ab}}{c+2a+2b}>
\\

\dfrac{a-{(b+c)/2}}{2a+2b+2c}+\dfrac{b-{(c+a)/2}}{2a+2b+2c}+\dfrac{c-{(a+b)/2}}{2a+2b+2c}=
0\\$
equality holds when $a=b=c$
 
Last edited:
Albert said:
my solution:
by using $AP\geq GP$ we have:

$\dfrac{a-\sqrt {bc}}{a+2b+2c}+\dfrac{b-\sqrt {ca}}{b+2c+2a}+\dfrac{c-\sqrt {ab}}{c+2a+2b}>
\\

\dfrac{a-{(b+c)/2}}{2a+2b+2c}+\dfrac{b-{(c+a)/2}}{2a+2b+2c}+\dfrac{c-{(a+b)/2}}{2a+2b+2c}=
0\\$
equality holds when $a=b=c$

Thanks Albert for participating!

Here is my solution:

$$\begin{align*}\frac{a-\sqrt{bc}}{a+2b+2c}+\frac{b-\sqrt{ca}}{b+2c+2a}+\frac{c-\sqrt{ab}}{c+2a+2b}&\ge \frac{a-\frac{b}{2}-\frac{c}{2}}{a+2b+2c}+\frac{b-\frac{c}{2}-\frac{a}{2}}{b+2c+2a}+\frac{c-\frac{b}{2}-\frac{a}{2}}{c+2a+2b}\\&\ge \frac{a-\frac{b}{2}-\frac{c}{2}}{3\sqrt{a^2+b^2+c^2}}+\frac{b-\frac{c}{2}-\frac{a}{2}}{3\sqrt{a^2+b^2+c^2}}+\frac{c-\frac{b}{2}-\frac{a}{2}}{3\sqrt{a^2+b^2+c^2}}\\&= \frac{1}{3\sqrt{a^2+b^2+c^2}}\left(a-\frac{b}{2}-\frac{c}{2}+b-\frac{c}{2}-\frac{a}{2}+c-\frac{b}{2}-\frac{a}{2}\right)\\&=\frac{1}{3\sqrt{a^2+b^2+c^2}}\left(1+b+c-a-b-c\right)\\&=0\,\,\,\,\text{Q.E.D.}\end{align*}$$

The first step follows from the AM-GM inequality that says $$\frac{b+c}{2}\ge \sqrt{bc}$$.

The second step follows from the Cauchy-Schwarz inequality that tells $$a+2b+2c\le\sqrt{1+2^2+2^2}\sqrt{a^2+b^2+c^2}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
936
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K