MHB Inequality involving a, b, c and d

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given the real numbers $a,\,b,\,c$ and $d$, prove that

$(1+ab)^2+(1+cd)^2+a^2c^2+b^2d^2\ge 1$
 
Mathematics news on Phys.org
Expanding the LHS of the inequality we get $1+2ab+a^2b^2+1+2cd+c^2d^2+a^2c^2+b^2d^2=1+(1+ab+cd)^2+(ac-bd)^2\ge 1$
 

Similar threads

Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
8
Views
2K
Replies
1
Views
1K
Replies
1
Views
960