MHB Inequality Of The Sum Of A Series

Click For Summary
The discussion centers on proving the inequality involving the sum of a series, specifically $$\frac{10}{\sqrt{11^{11}}}+\frac{11}{\sqrt{12^{12}}}+\cdots+\frac{2015}{\sqrt{2016^{2016}}} > \frac{1}{10!}-\frac{1}{2016!}$$. Participants share their solutions and express appreciation for each other's contributions. The conversation highlights the mathematical challenge and encourages collaboration. Overall, the thread showcases engagement in solving complex inequalities. The focus remains on the proof and validation of the stated inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{10}{\sqrt{11^{11}}}+\frac{11}{\sqrt{12^{12}}}+\cdots+\frac{2015}{\sqrt{2016^{2016}}}\gt \frac{1}{10!}-\frac{1}{2016!}$$
 
Mathematics news on Phys.org
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since equality holds above if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$
 
Euge said:
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since the above equality holds if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$

Spectacular, Euge! And thanks for participating!(Cool)
 
Euge said:
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since the above equality holds if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$
marvelous !
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K