MHB Inequality Of The Sum Of A Series

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $$\frac{10}{\sqrt{11^{11}}}+\frac{11}{\sqrt{12^{12}}}+\cdots+\frac{2015}{\sqrt{2016^{2016}}}\gt \frac{1}{10!}-\frac{1}{2016!}$$
 
Mathematics news on Phys.org
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since equality holds above if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$
 
Euge said:
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since the above equality holds if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$

Spectacular, Euge! And thanks for participating!(Cool)
 
Euge said:
Hi anemone,

Here is my solution.

Let $n\in \{11,\ldots, 2016\}$. Then $n!^2$ is the product of $k(n+1-k)$ as $k$ ranges from $1$ to $n$. Consider the inequality $$xy\ge x + y - 1 \qquad (x,y\in \Bbb N)$$ which follows from the inequality $(x - 1)(y - 1) \ge 0$. Since the above equality holds if and only if $x = 1$ or $y = 1$, we find that $k(n+1-k) > k + (n+1-k) - 1 = n$ for $1 < k < n$. Therefore $n!^2 > n^n$, or $\sqrt{n^n} < n!$. I now estimate

$$\frac{10}{\sqrt{11^{11}}} + \frac{11}{\sqrt{12^{12}}} + \cdots + \frac{2015}{\sqrt{2016^{2016}}}$$
$$=\sum_{n = 11}^{2016} \frac{n-1}{\sqrt{n^n}} > \sum_{n = 11}^{2016} \frac{n-1}{n!} = \sum_{n = 1}^{2016} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right),$$

which telescopes to $$\frac{1}{10!} - \frac{1}{2016!}.$$
marvelous !
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Back
Top