MHB Inequality solve (x+1)/6<x-(3x-2)/4

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
To solve the inequality (x+1)/6 < x - (3x-2)/4, the first step is to multiply every term by 12, resulting in 2(x+1) < 12x - 3(3x-2). Expanding this gives 2x + 2 < 12x - 9x + 6. Combining like terms simplifies the inequality to 2x + 2 < 3x + 6. After isolating x, the final result is -4 < x, indicating that x must be greater than -4.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9261
Ok a student sent this to me yesterday so want to answer without too many steps

I think the first thing to do is multiply every
term by 12

$2(x+1)<12x-3(3x-2)$
Expanding
$2x+2<12x-9x+6$
 

Attachments

  • Screenshot_20190908-095501_Gallery.jpg
    Screenshot_20190908-095501_Gallery.jpg
    9.1 KB · Views: 124
Last edited:
Mathematics news on Phys.org
That’s fine.
 
skeeter said:
That’s fine.
$\dfrac{x+1}{6}<x-\dfrac{3x-2}{4}$
Expanding
$2x+2<12x-9x+6$
Combine like terms
$2x+2<3x+6$
Subtract 2x from both sides
$2<x+6$
Subtract 6 from both sides
$-4<x$

Hopefully no typos

Looks like answer a.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
3K
Replies
5
Views
2K
Replies
8
Views
1K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top