MHB Inequality solve (x+1)/6<x-(3x-2)/4

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
To solve the inequality (x+1)/6 < x - (3x-2)/4, the first step is to multiply every term by 12, resulting in 2(x+1) < 12x - 3(3x-2). Expanding this gives 2x + 2 < 12x - 9x + 6. Combining like terms simplifies the inequality to 2x + 2 < 3x + 6. After isolating x, the final result is -4 < x, indicating that x must be greater than -4.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9261
Ok a student sent this to me yesterday so want to answer without too many steps

I think the first thing to do is multiply every
term by 12

$2(x+1)<12x-3(3x-2)$
Expanding
$2x+2<12x-9x+6$
 

Attachments

  • Screenshot_20190908-095501_Gallery.jpg
    Screenshot_20190908-095501_Gallery.jpg
    9.1 KB · Views: 127
Last edited:
Mathematics news on Phys.org
That’s fine.
 
skeeter said:
That’s fine.
$\dfrac{x+1}{6}<x-\dfrac{3x-2}{4}$
Expanding
$2x+2<12x-9x+6$
Combine like terms
$2x+2<3x+6$
Subtract 2x from both sides
$2<x+6$
Subtract 6 from both sides
$-4<x$

Hopefully no typos

Looks like answer a.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
3K
Replies
5
Views
2K
Replies
8
Views
1K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top