MHB Proof of Inequality: $|a+b| \leq |a| + |b|$

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $\dfrac{|a+b|}{1+|a+b|} \leq \dfrac{|a|}{1+|a|} + \dfrac{|b|}{1+|b|}$ has been proven through a series of algebraic manipulations. The proof involves establishing that $|a+b| \leq |a| + |b| + 2|a||b| + |a||b||a+b|$, which is valid due to the properties of absolute values. The discussion emphasizes the importance of ensuring that terms are correctly handled, particularly in the context of inequalities involving absolute values.

PREREQUISITES
  • Understanding of absolute value properties
  • Familiarity with algebraic manipulation techniques
  • Knowledge of inequalities in real analysis
  • Basic proficiency in mathematical proofs
NEXT STEPS
  • Study the properties of absolute values in inequalities
  • Learn about algebraic manipulation techniques for inequalities
  • Explore proofs involving inequalities in real analysis
  • Investigate the implications of the triangle inequality in various contexts
USEFUL FOR

Mathematicians, students studying real analysis, educators teaching algebraic inequalities, and anyone interested in mathematical proofs and their applications.

solakis1
Messages
407
Reaction score
0
prove the following inequality:
$\dfrac{|a+b|}{1+|a+b|}$ $\leq \dfrac{|a|}{1+|a|}$ +$\dfrac{|b|}{1+|b|}$
 
Mathematics news on Phys.org
to ifdahl[sp] ifdahl in the same way you proved the post : interesting inequality you can prove the above inequality[/sp]
 
Case I: $a$ and $b$ have the same sign:

Let the function $f$ be defined by: $f(x) = \frac{\left | x \right |}{1+\left | x \right |}$. Obviously $f$ is even, and $f’(x)$ is not defined in $x=0$, but $f$ is differentiable in the two domains $\mathbb{R}_-$ and $\mathbb{R}_+$, and we have by inspection: $f’’(x) < 0$ in both domains. Thus $f$ is concave on both sides of the ordinate.

Jensens inequality with equal weights then gives us:

\[f\left ( \frac{a+b}{2} \right ) \leq \frac{1}{2}\left ( f(a) + f(b)\right ) \\ \frac{\frac{1}{2}\left | a+b \right |}{1+\frac{1}{2}\left | a+b \right |} \leq \frac{1}{2}\left ( \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |} \right )\] - or

\[\frac{\left | a+b \right |}{1+\frac{1}{2}\left | a+b \right |} \leq \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |}\], which immediately implies:

\[\frac{\left | a+b \right |}{1+\left | a+b \right |} \leq \frac{\left | a \right |}{1+\left | a \right |} +\frac{\left | b \right |}{1+\left | b \right |}\].

Case II: $a$ and $b$ have opposite sign. Here, we cannot use the concavity argument, but the inequality is still valid:

First note, that: $\left | a+b \right |\leq max\left \{ \left | a \right |,\left | b \right | \right \}$

WLOG let $\left | b \right | \geq \left | a+b \right |$. Denote $x= \left | a+b \right |, \Delta = \left | b \right |-x \geq 0$:

The inequality: $\frac{\left | a+b \right |}{1+\left | a+b \right |}=\frac{x}{1+x} \leq \frac{x+\Delta }{1+x+\Delta } = \frac{\left | b \right |}{1+\left | b \right |}$ is true because:

\[\frac{x+\Delta }{1+x+\Delta }-\frac{x}{1+x}= \frac{(1+x)(x+\Delta )-x(1+x+\Delta )}{(1+x)(1+x+\Delta )}=\frac{\Delta }{(1+x)(1+x+\Delta )}\geq 0\]. Thus the inequality holds, from which we immediately have:

\[\frac{\left | a+b \right |}{1+\left | a+b \right |}\leq \frac{\left | b \right |}{1+\left | b \right |}\leq \frac{\left | a \right |}{1+\left | a \right |}+\frac{\left | b \right |}{1+\left | b \right |}\].
 
The triangle inequality tells us that $|a+b|\le |a|+|b|$. So:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} $$
Furthermore, positive fractions are smaller if their denominator is bigger. It means that $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ and also $\frac{1}{1+|a+b|}\le \frac 1{1+|b|}$.
Therefore:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$
 
Klaas van Aarsen said:
The triangle inequality tells us that $|a+b|\le |a|+|b|$. So:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} $$
Furthermore, positive fractions are smaller if their denominator is bigger. It means that $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ and also $\frac{1}{1+|a+b|}\le \frac 1{1+|b|}$.
Therefore:
$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a+b|} + \frac{|b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$$

[sp]for a=3 and for b=-:3 does it not the inequality : $\frac{1}{1+|a+b|}\le \frac 1{1+|a|}$ become : $1\leq \dfrac{1}{4}$[/sp]
 
solakis said:
prove the following inequality:
$\dfrac{|a+b|}{1+|a+b|}$ $\leq \dfrac{|a|}{1+|a|}$ +$\dfrac{|b|}{1+|b|}$
[sp]we have;

$\dfrac{|a+b|}{1+|a+b|}$ $\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$
or
$|a+b|(1+|a|)(1+|b|)\leq(1+|a+b|)[|a|(1+|b|)+|b|(1+|a|)]$
or
$|a+b|(1+|a|+|b|+|a||b|)\leq (1+|a+b|)(|a|+|b|+2|a||b|)$
or $|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$
And after canceling terms we end up with:
$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$
which is true because :
$|a+b|\leq |a|+|b|$
$0\leq2|a||b| =|ab|$
$0\leq |a||b||a+b|=|ab(a+b)| $
Bebause $ |X|\geq 0 $for all real X[/sp]
 
[sp]Let's start with:
$|a+b|\leq |a|+|b|$
$0\leq 2|a||b|$
$0\leq 2|a||b|$
adding the above we have:

$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$

Now adding to both sides$ |a||a+b|$....$|b||a+b|$.......$|a||b||a+b|$
we have:

$|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$

Taking common factor $|a+b|$ in both sides we have:

$|a+b|(1+|a|+|b|+|a||b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$............(1)

Now $1+|a|+|b|+|a||b|=1+|a|+|b|(1+|a|)=(1+|a|)(1+|b|)$................(2)

And substituting (2) into (1) we have:

$|a+b|(1+|a|)(1+|b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$...............(3)

And taking common factor:$|a|+|b|+2|a||b|$ in the left side (3) becomes:

$|a+b|(1+|a|)(1+|b|)\leq(|a|+|b|+2|a||b|)(1+|a+b|)$...............(4)

But $1+|a+b|>0\Rightarrow\dfrac{1}{1+|a+b|}>0$...............(5)

So we can multiply (4) by (5) and we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|+|b|+2|a||b|$..........(6)

But $|a|+|b|+2|a||b|=|a|+|b|+|a||b|+|a||b|=|a|(1+|b|)+|b|(1+|a|)$...........(7)

And substituting (6) into (7) into (6) we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|(1+|b|)+|b|(1+|a|)$..............(8)

But $1+|a|>0$ also $1+|b|>0$ hence $(1+|a|)(1+|b|)>0\Rightarrow\dfrac{1}{(1+|a|)(1+|b|)}>0$.......(9)

So we can multiply (8) by (9) and the result is:

$\dfrac{|a+b|}{1+|a+b|}\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$

$=\dfrac{|a|}{1+|a|} +\dfrac{|b|}{1+|b|}$[/sp[/sp]
 
solakis said:
[sp]Let's start with:
$|a+b|\leq |a|+|b|$
$0\leq 2|a||b|$
$0\leq 2|a||b||a+b|$
adding the above we have:

$|a+b|\leq |a|+|b|+2|a||b|+|a||b||a+b|$

Now adding to both sides$ |a||a+b|$....$|b||a+b|$.......$|a||b||a+b|$
we have:

$|a+b|+|a||a+b|+|b||a+b|+|a||b||a+b|\leq |a|+|b|+2|a||b|+|a||a+b|+|b||a+b|+2|a||b||a+b|$

Taking common factor $|a+b|$ in both sides we have:

$|a+b|(1+|a|+|b|+|a||b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$............(1)

Now $1+|a|+|b|+|a||b|=1+|a|+|b|(1+|a|)=(1+|a|)(1+|b|)$................(2)

And substituting (2) into (1) we have:

$|a+b|(1+|a|)(1+|b|)\leq |a|+|b|+2|a||b|+|a+b|( |a|+|b|+2|a||b|)$...............(3)

And taking common factor:$|a|+|b|+2|a||b|$ in the left side (3) becomes:

$|a+b|(1+|a|)(1+|b|)\leq(|a|+|b|+2|a||b|)(1+|a+b|)$...............(4)

But $1+|a+b|>0\Rightarrow\dfrac{1}{1+|a+b|}>0$...............(5)

So we can multiply (4) by (5) and we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|+|b|+2|a||b|$..........(6)

But $|a|+|b|+2|a||b|=|a|+|b|+|a||b|+|a||b|=|a|(1+|b|)+|b|(1+|a|)$...........(7)

And substituting (6) into (7) into (6) we have:

$\dfrac{|a+b|(1+|a|)(1+|b|)}{1+|a+b|}\leq |a|(1+|b|)+|b|(1+|a|)$..............(8)

But $1+|a|>0$ also $1+|b|>0$ hence $(1+|a|)(1+|b|)>0\Rightarrow\dfrac{1}{(1+|a|)(1+|b|)}>0$.......(9)

So we can multiply (8) by (9) and the result is:

$\dfrac{|a+b|}{1+|a+b|}\leq\dfrac{|a|(1+|b|)+|b|(1+|a|)}{(1+|a|)(1+|b|)}$

$=\dfrac{|a|}{1+|a|} +\dfrac{|b|}{1+|b|}$[/sp]
 
Sorry there is a terrible typo in both of my two prεvious solutions;
For the 3rd inequality from the top instead of $0\leq 2|a||b|$ or $0\leq 2|a||b||a+b|$ it shoulb be:

$0\leq |a||b||a+b|$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K