Inferring Shape of Phasors in Multi-Slit Diffraction

Click For Summary

Homework Help Overview

The discussion revolves around understanding the shape of phasors in the context of multi-slit diffraction, contrasting it with single-slit diffraction. Participants explore how phasors behave differently when generated by multiple slits compared to a single slit.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants discuss the relationship between phasors and constructive interference, questioning how the phase angle between adjacent sources affects the alignment of phasors. There is also a comparison of phasor behavior in single-slit versus multiple-slit scenarios.

Discussion Status

The discussion is active, with participants providing insights into the differences between single-slit and multiple-slit analyses. Some guidance has been offered regarding the alignment of phasors and the implications for intensity maxima and minima.

Contextual Notes

There is an emphasis on the importance of understanding the phase relationships and the geometric interpretation of phasors in the context of diffraction patterns. Participants reference external resources for further clarification.

hidemi
Messages
206
Reaction score
36
Homework Statement
At a bright diffraction line phasors associated with waves from the slits of a multiple-slit barrier:
A. are aligned
B. form a closed polygon
C. form a polygon with several sides missing
D. are parallel but adjacent phasors point in opposite directions
E. form the arc of a circle

The correct answer is A
Relevant Equations
d * sin(theta) = m * lambda
I know that phasors of a single-slit diffraction form a closed polygon or circle, but how could we infer the shape when phasors generated by slits of a multiple-slit barrier?
 
Physics news on Phys.org
The ## m \lambda=d \sin{\theta} ## for constructive interference is sort of on the right track, but what you are needing is the phase angle between phasors from adjacent sources a distance ## d ## apart: ## \phi=(\frac{2 \pi}{\lambda}) d \sin{\theta} ##. Using the first expression, (since you are told that the sources constructively interfere), what can you say about ## \phi ##? Will the phasors be aligned?
 
  • Like
Likes   Reactions: hidemi
hidemi said:
I know that phasors of a single-slit diffraction form a closed polygon or circle ...
Closed polygon's give minima (zero intensity), not maxima.

Think of adding phasors in the same way as adding vectors. The resultant is zero only when the vectors form a closed polygon.

There is an important difference between a single-slit and multiple-slits when using phasors.

For a single-slit analyis, each point in the aperture has a phasor. The phasors are aligned in only one situation - for the central direction.

For a multiple-slit analysis we associate each slit with a single phasor. A maximum is produced whenever the phasors are aligned (unlike a single-slit).

This video gives quite a good insight. You need to compare the single-slit and double-slit simulations carefully.
 
  • Like
Likes   Reactions: Charles Link and hidemi
Steve4Physics said:
Closed polygon's give minima (zero intensity), not maxima.

Think of adding phasors in the same way as adding vectors. The resultant is zero only when the vectors form a closed polygon.

There is an important difference between a single-slit and multiple-slits when using phasors.

For a single-slit analyis, each point in the aperture has a phasor. The phasors are aligned in only one situation - for the central direction.

For a multiple-slit analysis we associate each slit with a single phasor. A maximum is produced whenever the phasors are aligned (unlike a single-slit).

This video gives quite a good insight. You need to compare the single-slit and double-slit simulations carefully.

Thank you! I got it
 
  • Like
Likes   Reactions: Steve4Physics and Charles Link

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K