- #1
jaumzaum
- 434
- 33
Hello!
I was trying to calculate the amplitude of the secondary maximums in the single slit diffraction.
When I use the formula:
$$ I = I_0 (\frac {sin(\Delta \phi /2)} {\Delta \phi /2})^2 $$
If I take ## x = \Delta \phi /2 ## and derivate I get that the maximum occurs when:
$$ x = tan(x) $$
The first 2 solutions are x=± 4.493409 and x=± 7.72525
which gives ##I_0/I##= 21.19 and 60.68 respectively.
However, this site gives a more direct way of calculating the maximums.
They say the first secondary maximum occurs when the phasors make 1 and a half loop, and the second secondary maximum when the phasors make 2,5 loop. However, that gives a slight different answer, 22.21 and 61.68 respectively
View attachment 323616
Why are the values different? Which one is right?
Thanks!
I was trying to calculate the amplitude of the secondary maximums in the single slit diffraction.
When I use the formula:
$$ I = I_0 (\frac {sin(\Delta \phi /2)} {\Delta \phi /2})^2 $$
If I take ## x = \Delta \phi /2 ## and derivate I get that the maximum occurs when:
$$ x = tan(x) $$
The first 2 solutions are x=± 4.493409 and x=± 7.72525
which gives ##I_0/I##= 21.19 and 60.68 respectively.
However, this site gives a more direct way of calculating the maximums.
They say the first secondary maximum occurs when the phasors make 1 and a half loop, and the second secondary maximum when the phasors make 2,5 loop. However, that gives a slight different answer, 22.21 and 61.68 respectively
View attachment 323616
Why are the values different? Which one is right?
Thanks!
Attachments
Last edited: