I Infinite Square Well with an Oscillating Wall (Klein-Gordon Equation)

Foracle
Messages
29
Reaction score
8
TL;DR Summary
Numerical solution of the wavefunction blows up when the frequency of oscillation of the wall is high. What does this mean?
I am trying to numerically solve (with Mathematica) a relativistic version of infinite square well with an oscillating wall using Klein-Gordon equation. Firstly, I transform my spatial coordinate ## x \to y = \frac{x}{L[t]} ## to make the wall look static (this transformation is used a lot in solving non-static boundary condition in the non-relativistic case), which brings Klein-Gordon equation to :
Input :
1644917229990.png

Output :
1644917258275.png

All constants have been set to 1
1644917266102.png

I tried to solve this system where ##L(t)=2+sin(1000 t)## using NDSolve :
1644917349008.png

Then I plot my result as a function of ##(y,t)## :
1644917373977.png

The wavefunction ##\psi## blows up. This doesn't happen when I tune the frequency down to 1, ##L(t)=2+sin(t)##
1644917399498.png

My question is why does ##\psi## blow up when the frequency of the oscillation is high and what does it mean? Does it have anything to do with particle production? Or did I just mess up my code?
 

Attachments

  • 1644917332177.png
    1644917332177.png
    7.1 KB · Views: 141
Last edited:
Physics news on Phys.org
I have located my error. It was the fact that when I set ##\omega## to 1000, the velocity of the wall, ##\dot{L} = \omega cos(\omega t) \ge 1##, which is not allowed in the units that I am working with ##(c=1)##.
The solution to this is just to set ##L(t) = \frac{1}{\omega} (2+sin(\omega t))##, and this disastrous result doesn't happen anymore.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top