(Baby QM) Analytic Solution to the Infinite Square Well Problem

In summary, the individual is seeking to understand the 1-D time-independent Schrodinger's equation infinite square well problem and is questioning the analytical solution to plot against the normalized probability of finding the particle in a specific location. They mention the normalized wavefunction given by Hyperphysics being too large and welcome any suggestions. They also suggest using a nonlinear curve fit to find the correct multiplier for the probability density function.
  • #1
obstinatus
12
0
Hi,

I think I'm having a bit of a brain fart...I'm messing with this numerical code trying to understand the 1-D time-independent Schrodinger's equation infinite square well problem (V(x) infinite at the boundaries, 0 everywhere else). If normalized Phi squared is the probability of finding the particle in that location, what the heck is the analytical solution I should plot against it to see how close it is? The normalized wavefunction given by Hyperphysics is much too large. Any and all suggestions appreciated.
Infinite Square Well.png
 
Physics news on Phys.org
  • #2
obstinatus said:
Hi,

I think I'm having a bit of a brain fart...I'm messing with this numerical code trying to understand the 1-D time-independent Schrodinger's equation infinite square well problem (V(x) infinite at the boundaries, 0 everywhere else). If normalized Phi squared is the probability of finding the particle in that location, what the heck is the analytical solution I should plot against it to see how close it is? The normalized wavefunction given by Hyperphysics is much too large. Any and all suggestions appreciated.
View attachment 260814
What do you mean their wavefunction is too large? What specific wavefunction were you looking at?
 
  • #3
That probability density function looks like it has to be multiplied with a constant greater than 50 to become normalized. Then you can compare it to the exact solution.

You can also find the correct multiplier by making a nonlinear curve fit to this data with function

##P (x) = C\sin^2 (2\pi x)##

and setting ##C## as the fitting parameter. This can be done in Origin Pro or some free program like Grace.
 
Back
Top