klein gordon equation

  1. T

    A Solving scalar field propagation in a curved spacetime numerically

    Hey everybody, Background: I'm currently working on a toy model for my master thesis, the massless Klein-Gordon equation in a rotating static Kerr-Schild metric. The partial differential equations are (see http://arxiv.org/abs/1705.01071, equation 27, with V'=0): $$ \partial_t\phi =...
  2. G

    A Seeking a derivation of Schrödinger's wave equation

    I am interested in the derivation of Schrödinger’s wave equation from the Klein Gordon equation. I have looked in Penfold’s ‘The Road to Reality’, the open University’s Quantum Mechanics books, Feynman’s lectures, the internet, but not found what I want. Everyone seems to take it as a given...
  3. Y

    How to show speed is equal to group velocity?

    1. Homework Statement My question is, how do I show that speed is equal to group velocity? More information at https://imgur.com/a/m6FwNaG 2. Homework Equations v_g = dw/dk 3. The Attempt at a Solution Part a is substitution, part b uses v_g = dw/dk, part c is multiplication by h-bar, but I...
  4. J

    I Is the ground state energy of a quantum field actually zero?

    I start by outlining the little I know about the basics of quantum field theory. The simplest relativistic field theory is described by the Klein-Gordon equation of motion for a scalar field ##\large \phi(\vec{x},t)##: $$\large \frac{\partial^2\phi}{\partial t^2}-\nabla^2\phi+m^2\phi=0.$$ We...
  5. D

    Mde decomposition of quantum field in a box

    1. Homework Statement I am considering the Klein Gordon Equation in a box with Dirichlet conditions (i.e., ##\hat{\phi}(x,t)|_{boundary} = 0 ##). 1-D functions that obey the Dirichlet condition on interval ##[0,L]## are of the form below (using the discrete Fourier sine transform) $$f(x) =...
  6. xhwvnsghsfasd

    A Coulomb Klein Gordon: Where does e^(-iEt) come from?

    Hi everyone, I've been reading about the Klein Gordon equation with the Coulomb Potential. The full solution can be found here: http://wiki.physics.fsu.edu/wiki/index.php/Klein-Gordon_equation#Klein-Gordon_equation_with_Coulomb_potential I'm confused near the beginning of this. I understand...
  7. bananabandana

    I Negative and Positive energy modes of KG equation

    If we have the normal KG scalar field expansion: $$ \hat{\phi}(x^{\mu}) = \int \frac{d^{3}p}{(2\pi)^{3}\omega(\mathbf{p})} \big( \hat{a}(p)e^{-ip_{\mu}x^{\mu}}+\hat{a}^{\dagger}(p)e^{ip_{\mu}x^{\mu}} \big) $$ With ## \omega(\mathbf{p}) = \sqrt{|\mathbf{p}^{2}|+m^{2}}## Then why do we associate...
  8. C

    I Deductions of Formulas for Energy

    So, I am a newbie in quantum mechanics, took modern physics last fall for my physics minor. I know that Schrodinger based his equation based on the equation K + V = E, by using non-relativistic kinematic energy (P2/2m + V = E) p becoming the operator p= -iħ∇ for the wave equation eigenfunction...
  9. F

    I Equivalent Klein-Gordon Lagrangians and equations of motion

    Suppose one starts with the standard Klein-Gordon (KG) Lagrangian for a free scalar field: $$\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^{2}\phi^{2}$$ Integrating by parts one can obtain an equivalent (i.e. gives the same equations of motion) Lagrangian...
  10. L

    I Wave equation solution using Fourier Transform

    I'm studying Quantum Field Theory and the first example being given in the textbook is the massless Klein Gordon field whose equation is just the wave equation \Box \ \phi = 0. The only problem is that I'm not being able to get the same solution as the book. In the book the author states that...
  11. referframe

    I When can the Klein-Gordon Equation be used for a photon?

    Consider the double-slit experiment done with photons from a laser. If one was interested only in computing position (vertical) probability amplitudes and did not care about spin/helicity, could the Klein-Gordon Equation (with mass set to zero) be used? Thanks in advance.
  12. It's me

    Using Noether's Theorem find a continuity equation for KG

    1. Homework Statement Consider the Klein-Gordon equation ##(\partial_\mu \partial^{\mu}+m^2)\varphi(x)=0##. Using Noether's theorem, find a continuity equation of the form ##\partial_\mu j^{\mu}=0##. 2. Homework Equations ##(\partial_\mu \partial^{\mu}+m^2)\varphi(x)=0## 3. The Attempt at...
  13. D

    A How to derive general solution to the Klein-Gordon equation

    I understand that the ansatz to $$(\Box +m^{2})\phi(\mathbf{x},t)=0$$ (where ##\Box\equiv\partial^{\mu}\partial_{\mu}=\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}##) is of the form ##\phi(\mathbf{x},t)=e^{(iE_{\mathbf{k}}t-\mathbf{k}\cdot\mathbf{x})}##, where...
  14. loops496

    Klein-Gordon Hamiltonian commutator

    1. Homework Statement Consider the quantum mechanical Hamiltonian ##H##. Using the commutation relations of the fields and conjugate momenta , show that if ##F## is a polynomial of the fields##\Phi## and ##\Pi## then ##[H,F]-i \partial_0 F## 2. Homework Equations For KG we have...
  15. A

    Klein-Gordon eqn: why dismiss messages at phase velocity

    Hi All, I've heard it said that the superluminal phase velocity of the KG eqn is not a problem for relativistic causality because signals travel at the packet/group velocity, which is the inverse of the phase velocity (c being 1). I'm a bit skeptical of this. We can strip away all the quantum...
  16. M

    How does one derive the Lagrangian densities used in QFT?

    I've been working through a qft book by Sadovskii (while I wait for my Peskin book to come in) and I've used some later chapters of Griffith's Into to Elementary Particles as an introduction to some qft. My issue with both of these is that, where in classical mechanics we have the Lagrangian...