Influence of thermal expansion on thermal conductivity

Click For Summary
SUMMARY

The discussion centers on the influence of thermal expansion on thermal conductivity in heat conduction problems. It is established that for basic scenarios, adjusting thermal conductivity with temperature is sufficient, as the geometry changes due to thermal expansion are minimal. In more complex cases involving elastic and plastic strains, thermal conductivity should be considered in the deformed frame. The analysis shows that the effect of thermal expansion on thermal conductivity is negligible compared to the temperature-induced changes, with a 0.002% difference attributed to thermal expansion versus a 4.9% increase due to temperature changes.

PREREQUISITES
  • Understanding of thermal conductivity and its SI units (W/m/K)
  • Familiarity with coefficients of thermal expansion, particularly for materials like aluminum
  • Knowledge of heat conduction principles and thermal resistance calculations
  • Basic concepts of elastic and plastic strains in materials
NEXT STEPS
  • Research the relationship between temperature and thermal conductivity for various materials
  • Explore the mathematical modeling of heat conduction in deformed frames
  • Investigate the impact of large coefficients of thermal expansion on thermal conductivity
  • Learn about advanced thermal analysis techniques in materials science
USEFUL FOR

Engineers, materials scientists, and researchers involved in thermal analysis, heat transfer calculations, and material property assessments will benefit from this discussion.

Hologram0110
Messages
200
Reaction score
10
Hi everyone.
I was wondering if there is a convention for solving heat conduction problems. Specifically should one account for thermal expansion? The SI units for thermal conductivity are W/m/K. Does m include thermal strains already?

It seems for basic problems it would be easier to adjust the thermal conductivity. (ie decrease the conductivity with temperature to account for the fact that the geometry would actually be larger due to thermal conductivity).

For more complicated problems where there are elastic and plastic strains where you explicitly define a deformed and undeformed frames it seems like you would want thermal conductivity in the deformed frame.

I've been working assuming it is in the deformed frame but a colegue has raised concerns. Is there a well known convention?
 
Engineering news on Phys.org
For many materials, the change in thermal conductivity with temperature is much bigger than the effect of thermal expansion in your question, and the conductivity may either increase or decrease with increasing temperature for different materials. For example compare low alloy and high alloy steels in http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_7.html

The definition of thermal conductivity on that web page answers your question (if you read it carefully!), but in practice, the data is often not accurate enough for it to make any practical difference either way.
 
I've never had to take into account expansion of a volume due to thermal expansion for the purpose of a thermal conduction calculation, I typically just use data for thermal conductivity as a function of temperature and call it good.

A quick analysis:

- Typical coefficients of thermal expansion are on the order of 10^-5 or 10^-6; for example Aluminum is 22.2*10^-6 m/m*K. Aluminum's thermal conductivity is 205 W/m*K at 298 K.

- Imagine analyzing conduction along a 1 m long bar of aluminum with square cross-section of 1 cm x 1 cm. Thermal resistance for conduction is Rt = L/(K*A). So at 298 K, thermal resistance of the bar is 48.780 K/W.

- Now increase the temperature of the bar to 398 K; thermal conductivity goes up to 215 W/m*K. If we ignore the volumetric effects this decreases the thermal resistance to 46.512 K/W.

- With the increase in temperature the bar also expands 22 microns in length and the cross-section area increases by 4.4*10^-9 m^2. If we take into account the increase of thermal conductivity and the volumetric changes to the bar the thermal reistance comes out to 46.511 K/W.

So the thermal expansion accounts for a 0.002% difference in the thermal conductivity (my guess well within the margin of error for the physical constants), where as the thermal conductivity increases by 4.9% just due to temperature change. So you would have to be talking about a very large coefficient of thermal expansion or very large temperature changes for it to become a significant effect.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
21K
  • · Replies 1 ·
Replies
1
Views
2K