Initial value problem of the wave equation

Click For Summary
SUMMARY

The discussion focuses on proving that the solution to the initial value problem of the wave equation, defined by the equation $$u_{tt}=u_{xx}+f(x,t)$$ with compact support initial data and non-homogeneous term $f$, also possesses compact support at all times. The solution is expressed as $$u(x,t)=\frac{1}{2}[\phi(x+t)+\phi(x-t)]+\frac{1}{2}\int_{x-t}^{x+t} \psi(y) dy+\frac{1}{2} \int_0^t \int_{x-(t-s)}^{x+(t-s)} f(y,s)dy ds$$. The conditions for $u(x,T)=0$ are established, confirming that $u$ remains non-zero outside the interval $[a-T,b+T]$, thereby maintaining compact support.

PREREQUISITES
  • Understanding of wave equations and initial value problems
  • Familiarity with compact support functions
  • Knowledge of integral calculus and its application in solving differential equations
  • Proficiency in mathematical notation and analysis
NEXT STEPS
  • Study the properties of compact support functions in the context of differential equations
  • Explore the implications of non-homogeneous terms in wave equations
  • Learn about the D'Alembert solution for the wave equation
  • Investigate the role of initial conditions in determining the behavior of solutions
USEFUL FOR

Mathematicians, physicists, and students studying partial differential equations, particularly those interested in wave phenomena and initial value problems.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to prove that if for the initial value problem of the wave equation

$$u_{tt}=u_{xx}+f(x,t), x \in \mathbb{R}, 0<t<\infty$$

the data (i.e. the initial data and the non-homogeneous $f$) have compact support, then, at each time, the solution has compact support.

I have thought the following.

Suppose that we have the initial data $u(x,0)=\phi(x)$ and $u_t(x,0)=\psi(x)$.

The functions $f, \phi, \psi$ have compact support, meaning that the functions are zero outside a bounded set $[a,b]$.

The solution of the initial value problem is given by

$$u(x,t)=\frac{1}{2}[\phi(x+t)+\phi(x-t)]+\frac{1}{2}\int_{x-t}^{x+t} \psi(y) dy+\frac{1}{2} \int_0^t \int_{x-(t-s)}^{x+(t-s)} f(y,s)dy ds$$

Let $t=T$ arbitrary.

Then

$$u(x,T)=\frac{1}{2}[\phi(x+T)+\phi(x-T)]+\frac{1}{2}\int_{x-T}^{x+T} \psi(y) dy+\frac{1}{2} \int_0^T \int_{x-(T-s)}^{x+(T-s)} f(y,s)dy ds$$

We check when $u(x,T)=0$.

We have $u(x,T)=0$ when

  1. $x+T, x-T \in \mathbb{R} \setminus{[a,b]}$,
  2. $x-T,x+T<a$ or $x-T,x+T>b$,
  3. $x-(T-s)<a$ and $x+(T-s)<a$ or $x-(T-s)>b$ and $x+(T-s)>b$,
The second and third point holds for $x<a-T$ and $x>b+T$.

Thus $u$ is non-zero outside $[a-T,b+T]$ and $u$ has compact support. Is everything right? (Thinking)
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

I want to prove that if for the initial value problem of the wave equation

$$u_{tt}=u_{xx}+f(x,t), x \in \mathbb{R}, 0<t<\infty$$

the data (i.e. the initial data and the non-homogeneous $f$) have compact support, then, at each time, the solution has compact support.

I have thought the following.

Suppose that we have the initial data $u(x,0)=\phi(x)$ and $u_t(x,0)=\psi(x)$.

The functions $f, \phi, \psi$ have compact support, meaning that the functions are zero outside a bounded set $[a,b]$.

Hey evinda! (Wave)

I haven't figured everything out yet, but... how could you tell that $\phi$ and $\psi$ have compact support? (Wondering)
 
I like Serena said:
Hey evinda! (Wave)

I haven't figured everything out yet, but... how could you tell that $\phi$ and $\psi$ have compact support? (Wondering)

This is given that the initial data have compact support... (Thinking)
 
evinda said:
This is given that the initial data have compact support...

Ah okay.
Then it looks right to me! (Happy)

You may want to clarify that the 3 bulleted numbers correspond to the 3 terms in the solution though. (Nerd)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K