I Instantaneous velocity - displacement and distance

Click For Summary
Instantaneous velocity is defined as the first derivative of displacement with respect to time and can also be expressed as the first derivative of distance with respect to time. While both definitions yield the same result in one-dimensional motion, they do not generally equate in multidimensional scenarios. The discussion highlights the importance of context, particularly in one-dimensional cases where signed distance from the origin represents position. Clarifying these distinctions is crucial for understanding the nuances of motion in physics.
adjurovich
Messages
119
Reaction score
21
Instantaneous velocity is defined as the first derivative of displacement with respect to time:

##\vec{v} = \dfrac{d \vec{r}}{dt}##
However, instantaneous velocity is also defined as the first derivative of function of distance with respect to time:

##v = \dfrac{ds}{dt}##
Why do these two different quantities result in the same thing? We can certainly find the distance traveled between two points if we know the displacement function, why?​
 
Physics news on Phys.org
adjurovich said:
Instantaneous velocity is defined as the first derivative of displacement with respect to time:

##\vec{v} = \dfrac{d \vec{r}}{dt}##
However, instantaneous velocity is also defined as the first derivative of function of distance with respect to time:

##v = \dfrac{ds}{dt}##
Says who and where? Except as a special case in a one-dimensional setting?

adjurovich said:
Why do these two different quantities result in the same thing?​
They do not. Not generally.
 
Orodruin said:
Says who and where? Except as a special case in a one-dimensional setting?


They do not. Not generally.
How would you explain it in “special” one dimensional case?
 
The (signed) distance from the origin is the position in one dimension.
 
For fun I was trying to use energy considerations to determine the depth to which a solid object will sink in a fluid to reach equilibrium. The first approach that I tried was just to consider the change in potential energy of the block and the fluid as the block is lowered some unknown distance d into the fluid similar to what is shown in the answer to this post. Upon taking the limit as the vessel's cross sectional area approaches infinity I have an extra factor of 2 in the equilibrium...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?