- #1

Slimy0233

- 167

- 48

- Homework Statement
- Velocity of a particle is ##\vec{v}=V_0\left[-\sin \omega t \hat{i}+\cos \omega t \hat{j}\right]##

##V_0, \omega## are constants.

Calc dist, displacement during time ##t = 0## to ##t = t_{0}##

- Relevant Equations
- ##\vec{v}=V_0\left[-\sin \omega t \hat{i}+\cos \omega t \hat{j} \right]##

edit: I don't know why my latex isn't rendering, any help would be appreciated.

Edit 2: The question was due to a misunderstanding I had, I thought integrating instantaneous velocity would give me average velocity.

I have attached what I have tried so far. I had a doubt. Can you calculate the distance travelled by an object/particle using only the instantaneous velocity?

I mean, is the speed travelled by an object in time interval t = 0 to t = ##t_{0}##

S = ##V_{inst}*t_{0}##

My professor basically did this [Image with prof in it]

The other one is what I think the answer would be. I calculate the average velocity from instantaneous velocity by integrating ##V_{inst}## and then found out the average speed by finding the magnitude of the average velocity <vec{v}>

So, who is right? (I know I probably am wrong, but I want to know why)

Edit 2: The question was due to a misunderstanding I had, I thought integrating instantaneous velocity would give me average velocity.

I have attached what I have tried so far. I had a doubt. Can you calculate the distance travelled by an object/particle using only the instantaneous velocity?

I mean, is the speed travelled by an object in time interval t = 0 to t = ##t_{0}##

S = ##V_{inst}*t_{0}##

My professor basically did this [Image with prof in it]

The other one is what I think the answer would be. I calculate the average velocity from instantaneous velocity by integrating ##V_{inst}## and then found out the average speed by finding the magnitude of the average velocity <vec{v}>

So, who is right? (I know I probably am wrong, but I want to know why)

Last edited: