Integral Challenge #1: Prove 0 ≤ a < π/2

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary
SUMMARY

The integral challenge demonstrates that for \( 0 \le a < \frac{\pi}{2} \), the equation \( \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1} \) holds true. This result is crucial for understanding the behavior of integrals involving exponential decay and oscillatory functions. The challenge emphasizes the importance of the parameters \( a \) and \( b \) in determining the integral's convergence and value.

PREREQUISITES
  • Understanding of integral calculus, specifically improper integrals.
  • Familiarity with exponential functions and trigonometric identities.
  • Knowledge of convergence criteria for integrals.
  • Experience with Fourier transforms and their applications in solving integrals.
NEXT STEPS
  • Explore the properties of improper integrals and their convergence criteria.
  • Study the application of Fourier transforms in evaluating integrals.
  • Learn about the use of trigonometric identities in simplifying integrals.
  • Investigate the role of parameters in integral equations and their impact on results.
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus and integral equations will benefit from this discussion.

polygamma
Messages
227
Reaction score
0
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.
 
Physics news on Phys.org
Random Variable said:
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.

\begin{align}
\int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx &= \mathrm{Re}\int_{0}^{\infty} e^{-x \cos a} e^{ix \sin a } \cos (bx) \ dx\\ &= \mathrm{Re}\int_{0}^{\infty} e^{-x e^{-ia}} \cos (bx) \ dx \\& = \mathrm{Re}\frac {e^{-ia}}{e^{-2ia}+b^2}\\&= \mathrm{Re}\frac{\cos(a)-i\sin(a)}{\cos(2a)-i\sin(2a)+b^2}\\&= \mathrm{Re}\frac{(\cos(a)-i\sin(a))(\cos(2a)+b^2+i\sin(2a))}{(\cos(2a)+b^2)^2+\sin^2(2a)}\\&= \frac{\cos(2a)\cos(a)+\cos(a)b^2+\sin(2a)\sin(a)}{b^4+2b^2 \cos(2a)+1}\\&=\frac{(1+b^2)\cos(a)}{b^4+2b^2 \cos(2a)+1}
\end{align}

The convergence is justified by the Laplace transform. Since $$|\cos(bx)| \leq 1$$ so it is of an exponential order and we can take $$|\cos(bx)| \leq e^{0\, x}$$ so the value of $$c=0$$. Hence the integral converges to the value for $$\mathrm{Re}(e^{ia})>0$$ or $$\cos(a)>0$$ which clearly satisfy $$0 \leq a < \frac{\pi}{2}$$
 
Last edited by a moderator:

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K