MHB Integral Challenge #1: Prove 0 ≤ a < π/2

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary
The integral challenge requires proving that for the range 0 ≤ a < π/2, the integral of e^(-x cos a) multiplied by cos(x sin a) and cos(bx) from 0 to infinity equals (b² + 1) cos a divided by (b⁴ + 2b² cos(2a) + 1). Participants are encouraged to engage with the problem and provide solutions or insights. The challenge aims to stimulate discussion and problem-solving within the community. Future integral challenges will be numbered for easier reference. This discussion emphasizes the importance of mathematical proofs in understanding integral calculus.
polygamma
Messages
227
Reaction score
0
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.
 
Mathematics news on Phys.org
Random Variable said:
Show that for $ \displaystyle 0 \le a < \frac{\pi}{2}$,

$$ \int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx = \frac{(b^{2}+1) \cos a}{b^{4}+2b^{2} \cos (2a) + 1 }$$When I post integral challenge problems in the future, I'll just number them.

\begin{align}
\int_{0}^{\infty} e^{-x \cos a} \cos(x \sin a) \cos (bx) \ dx &= \mathrm{Re}\int_{0}^{\infty} e^{-x \cos a} e^{ix \sin a } \cos (bx) \ dx\\ &= \mathrm{Re}\int_{0}^{\infty} e^{-x e^{-ia}} \cos (bx) \ dx \\& = \mathrm{Re}\frac {e^{-ia}}{e^{-2ia}+b^2}\\&= \mathrm{Re}\frac{\cos(a)-i\sin(a)}{\cos(2a)-i\sin(2a)+b^2}\\&= \mathrm{Re}\frac{(\cos(a)-i\sin(a))(\cos(2a)+b^2+i\sin(2a))}{(\cos(2a)+b^2)^2+\sin^2(2a)}\\&= \frac{\cos(2a)\cos(a)+\cos(a)b^2+\sin(2a)\sin(a)}{b^4+2b^2 \cos(2a)+1}\\&=\frac{(1+b^2)\cos(a)}{b^4+2b^2 \cos(2a)+1}
\end{align}

The convergence is justified by the Laplace transform. Since $$|\cos(bx)| \leq 1$$ so it is of an exponential order and we can take $$|\cos(bx)| \leq e^{0\, x}$$ so the value of $$c=0$$. Hence the integral converges to the value for $$\mathrm{Re}(e^{ia})>0$$ or $$\cos(a)>0$$ which clearly satisfy $$0 \leq a < \frac{\pi}{2}$$
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K