- #1
- 87
- 0
Calculate $\displaystyle \int_0^{\infty} \frac{\sin x}{\cos x + \cosh x}\, \mathrm dx.$
If nothing else, you can express these functions as exponentials.
$sin(x)= \frac{e^{ix}- e^{-ix}}{2i}$
$cos(x)= \frac{e^{ix}+ e^{-ix}}{2}$
$cosh(x)= \frac{e^x+ e^{-x}}{2}$