MHB Integral Challenge #3: Proving Li$_{2m+1}$ w/ Clausen Function

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
DreamWeaver
Messages
297
Reaction score
0
Prove the following integral representation of Polylogarithm, in terms of the Clausen function:$$\text{Li}_{2m+1}(e^{-\theta})=\frac{2}{\pi}\int_0^{\pi /2}\text{Cl}_{2m+1}(\theta \tan x)\, dx$$
NB. You're unlikely to find this is any books... I worked it out a while back, and haven't seen it anywhere else. That said, it's actually a lot easier than it looks... (Heidy)
 
Mathematics news on Phys.org
I don't want to spoil this one, or prematurely give the answer - as I know many folks don't exactly log on every day - but for those of you who'd like a bit of a hint, here are two...

Spoiler #1:

Consider the classic integral

$$\int_0^{\infty}\frac{\cos ax}{1+x^2}\,dx=\frac{\pi}{2}e^{-a} \, \quad 0 < a < \infty \in \mathbb{R}$$
Spoiler #2:

Let $$a$$ be an integer $$\ge 1$$. Now sum over $$a \in \mathbb{Z}^{+}$$, and consider the infinite sum of these integrals in $$a$$ in terms of the series definition of the Clausen function...
Broader implications (Spoiler #3):

Integrals of a similar type to that in Spoiler #1 can be used to derive more complex results, such as:

$$(1) \int_0^{\infty}\frac{x \text{Cl}_{2m}(x \theta)}{(b^2+x^2)^2}\,dx=\frac{\pi \theta}{4b}\text{Li}_{2m-1}(e^{-b\theta})$$

$$(1) \int_0^{\infty}\frac{x \text{Sl}_{2m+1}(x \theta)}{(b^2+x^2)^2}\,dx=\frac{\pi \theta}{4b}\text{Li}_{2m}(e^{-b\theta})$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
125
Views
19K
Back
Top