MHB Integral equation by successive approximation

AI Thread Summary
The discussion centers on solving an integral equation using the method of successive approximation, also known as Picard Iterations. The user is exploring the convergence of the sequence defined by the iterations, specifically questioning the predictability of the leading terms in the polynomials generated. They express uncertainty about finding an explicit form for the approximations, denoted as $y_n(x)$. The integral equation relates to a differential equation with initial conditions, and the user provides specific values for $y_0$ and $y_1$. The conversation highlights the complexities involved in deriving solutions through this iterative method.
Suvadip
Messages
68
Reaction score
0
if
png.latex
, then what will be
png.latex
. In fact I was solving the integral equation
png.latex
by the method of successive approximation.
 
Mathematics news on Phys.org
I was not familiar with the name of the method until I noticed it's the same as Picard Iterations (after some googling). I tried some ways to see a pattern in the polynomials but I failed. Especially the leading terms are very unpredictable in my opinion. Perhaps it's not possible to find an explicit form for $y_n(x)$.

What's the background of this problem?
 
suvadip said:
if
png.latex
, then what will be
png.latex
. In fact I was solving the integral equation
png.latex
by the method of successive approximation.

Under appropriate conditions the solution of the differential equation ...

$\displaystyle y^{\ '} = f(x,y),\ y(0)= y_{0}\ (1)$

... must satisfy the following integral equation...

$\displaystyle y = y_{0} + \int_{x_{0}}^{x} f\{t, y(t)\}\ d t\ (2)$

If You define...

$\displaystyle y_{1} = y_{0} + \int_{x_{0}}^{x} f\{t, y_{0}\}\ d t\ (3)$

... and...

$\displaystyle y_{n} = y_{0} + \int_{x_{0}}^{x} f\{t, y_{n-1}\}\ d t\ (4)$

... then the sequence of $y_{n}$ converges to the solution $y(x)$...

In Your case is $y_{0}=1$, $x_{0}=0$ and $y_{1} = (1 + x)^{2}$, so that is $f(x,1) = 2\ (1+x)$...

Kind regards

$\chi$ $\sigma$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top