Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integral equations of convolution type

  1. Mar 13, 2007 #1
    i am asked to find f(x) s.t. exp(-xsqd/2) =1/2the integral (-inf to +inf) of exp[-|x-u|f(u)du. I have got as far as to show that the transform f(k)=(1+ksqd)exp[-ksqd/2) and my notes show that this implies the next line which is f(x)=exp[-xsqd/2] -[exp(-xsqd/2)]'' {'' denotes twice differentiation w.r.t x} and this in turn is equal to (2-xsqd)exp[-xsqd/2]. I am not sure how these last two lines where reached, was the inversion formula applied to f(k) and then some integration done? or was some other result used?

    I have a simliar question where i must use the convolution theorem to show that the solution to the following integral equation

    integral(-inf to + inf) of {f(u)/1+(x-u)^2}du=1/(xsqd+4) is


    i have got as far as to show transform of 1/(xsqd+4)=(2pi)^1/2.transform of1/(1+xsqd).transf and i have used contour integration to show transform of 1/(4+xsqd)=(pi/4).exp[-2]. I have also shown that trans 1/(1+xsqd) =(pi/2)exp[-1]

    so I have derived that transform f =(e^-1)/(2pi)^1/2

    is this correct up to this point? and where do I go from here, I'm stuck at the same point as the first question...
    Last edited: Mar 13, 2007
  2. jcsd
  3. May 8, 2011 #2
    what is the inverse of the operator

    Uφ ≡ φ(x) − 2e^{-x}\int_{-\infty}^{x} e^{t}φ(t)dt

    where φ ∈ L_2(−∞,∞)?
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook