MHB Integral: $\int \frac{x}{9+x^4}dx$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Substitution
Click For Summary
The integral of the function $\int \frac{x}{9+x^4}dx$ is solved using the substitution $u=x^2$, leading to the differential $du=2xdx$. This transforms the integral into $\frac{1}{2} \int \frac{1}{9+u^2}du$. The integral is then evaluated using a trigonometric substitution, resulting in $\frac{1}{6} \int dw$, which simplifies to $\frac{arc \tan \frac{x^2}{3}}{6} + c$. The final result is $\int \frac{x}{9+x^4}dx = \frac{arc \tan \frac{x^2}{3}}{6} + c$.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int\frac{x}{9+x^4}dx$
$$u=x^2\ du=2x\ dx\ \ x=\sqrt{x}$$
I assume this going to have a trig answer but I didn't know how to deal with the $$dx$$
 
Physics news on Phys.org
karush said:
$\int\frac{x}{9+x^4}dx$
$$u=x^2\ du=2x\ dx\ \ x=\sqrt{x}$$
I assume this going to have a trig answer but I didn't know how to deal with the $$dx$$

$$u=x^2 \Rightarrow du=2xdx$$

$$\int\frac{x}{9+x^4}dx=\frac{1}{2}\int \frac{1}{9+u^2}du=\frac{1}{2 \cdot 9} \int \frac{1}{1+\left (\frac{u}{3}\right)^2 }$$

$$\frac{u}{3}=\tan w \Rightarrow \frac{1}{3}du=\frac{1}{\cos^2 w} dw$$

$$\frac{1}{1+\tan^2 w}=\cos^2 w$$

$$\frac{1}{2 \cdot 9} \int \frac{1}{1+\left (\frac{u}{3}\right)^2 }du=\frac{1}{6} \int dw=\frac{w}{6}+c=\frac{arc \tan \frac{u}{3}}{6}+c=\frac{arc \tan \frac{x^2}{3}}{6}+c$$

Therefore, $$\int\frac{x}{9+x^4}dx=\frac{arc \tan \frac{x^2}{3}}{6}+c$$
 
Latex not typesetting
 
karush said:
Latex not typesetting

It won't render on Tapatalk. We cannot force it to at this time so if you want to view LaTeX you'll have to visit our full desktop site.
 
OK thank you
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K