MHB Integral: $\int \frac{x}{9+x^4}dx$

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Substitution
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int\frac{x}{9+x^4}dx$
$$u=x^2\ du=2x\ dx\ \ x=\sqrt{x}$$
I assume this going to have a trig answer but I didn't know how to deal with the $$dx$$
 
Physics news on Phys.org
karush said:
$\int\frac{x}{9+x^4}dx$
$$u=x^2\ du=2x\ dx\ \ x=\sqrt{x}$$
I assume this going to have a trig answer but I didn't know how to deal with the $$dx$$

$$u=x^2 \Rightarrow du=2xdx$$

$$\int\frac{x}{9+x^4}dx=\frac{1}{2}\int \frac{1}{9+u^2}du=\frac{1}{2 \cdot 9} \int \frac{1}{1+\left (\frac{u}{3}\right)^2 }$$

$$\frac{u}{3}=\tan w \Rightarrow \frac{1}{3}du=\frac{1}{\cos^2 w} dw$$

$$\frac{1}{1+\tan^2 w}=\cos^2 w$$

$$\frac{1}{2 \cdot 9} \int \frac{1}{1+\left (\frac{u}{3}\right)^2 }du=\frac{1}{6} \int dw=\frac{w}{6}+c=\frac{arc \tan \frac{u}{3}}{6}+c=\frac{arc \tan \frac{x^2}{3}}{6}+c$$

Therefore, $$\int\frac{x}{9+x^4}dx=\frac{arc \tan \frac{x^2}{3}}{6}+c$$
 
Latex not typesetting
 
karush said:
Latex not typesetting

It won't render on Tapatalk. We cannot force it to at this time so if you want to view LaTeX you'll have to visit our full desktop site.
 
OK thank you
 

Similar threads

Back
Top