MHB Integral of 1/(1+cos(x)) Without Substitution Rule

Click For Summary
The integral of 1/(1+cos(x)) can be approached without substitution by manipulating the expression. One method involves multiplying by (1-cos(x))/(1-cos(x)), resulting in the form (1-cos(x))/sin^2(x). This leads to the integral of csc^2(x) - csc(x)cot(x), which simplifies to -cot(x) + csc(x) + C. Another approach uses the identity 1+cos(x) = 2cos^2(x/2), allowing the integral to be expressed as (1/2)∫sec^2(x/2)dx, yielding tan(x/2) + C. Both methods provide valid solutions to the integral.
Yankel
Messages
390
Reaction score
0
Hello

I am trying to solve the integral of the next function:

1/(1+cos(x))

and without using the substitution rule...any ideas ?

thanks !
 
Physics news on Phys.org
One could proceed as follows:

$$\frac{1}{\cos(x)+1}\cdot\frac{\cos(x)+1}{\cos(x)+1}=\frac{\cos(x)+1}{(\cos(x)+1)^2}= \frac{\cos(x)+\sin^2(x)+\cos^2(x)}{(\cos(x)+1)^2}=$$

$$\frac{(\cos(x)+1)\cos(x)-\sin(x)(-\sin(x))}{(\cos(x)+1)^2}= \frac{(\cos(x)+1)\frac{d}{dx}(\sin(x))-\sin(x)\frac{d}{dx}(\cos(x)+1)}{(\cos(x)+1)^2}=$$

$$\frac{d}{dx}\left(\frac{\sin(x)}{\cos(x)+1} \right)$$
 
Yankel said:
Hello

I am trying to solve the integral of the next function:

1/(1+cos(x))

and without using the substitution rule...any ideas ?

thanks !

You can use

$$1+\cos(x)= 2\cos^2\left(\frac{x}{2} \right)$$

or you can use that

$$\frac{1}{1+\cos(x)}=\frac{1-\cos(x)}{\sin^2(x)}$$
 
Yankel said:
Hello

I am trying to solve the integral of the next function:

1/(1+cos(x))

and without using the substitution rule...any ideas ?

thanks !

You will have a LOT of difficulty trying to integrate this function without making a substitution.
 
Hello, Yankel!

\int \frac{dx}{1+\cos x}
Multiply by \frac{1-\cos x}{1-\cos x}

. . \frac{1}{1+\cos x} \cdot\frac{1-\cos x}{1-\cos x} \;=\;\frac{1-\cos x}{1-\cos^2x} \;=\;\frac{1-\cos x}{\sin^2x}

. . =\;\frac{1}{\sin^2x} - \frac{1}{\sin x}\,\frac{\cos x}{\sin x} \;=\;\csc^2x - \csc x\cot xTherefore:

.. \int(\csc^2x - \csc x\cot x)\,dx \;=\; -\cot x + \csc x + C
 
Yankel said:
Hello

I am trying to solve the integral of the next function:

1/(1+cos(x))

and without using the substitution rule...any ideas ?

thanks !

Since $\cos 2\alpha=2\cos^2\alpha-1$, we have:
$$\frac 1 {1+cos(x)} = \frac 1 {1+(2\cos^2 (x/2)-1)} = \frac 1 {\cos^2(x/2)} \cdot \frac 1 2$$

Since $$\tan'u=\frac 1 {\cos^2u}$$, it follows that
$$\int \frac {dx} {1+cos(x)} = \int \frac 1 {\cos^2(x/2)} \cdot \frac 1 2 dx = \tan \frac x 2 + C$$
Verify by applying the chain rule to the right hand side.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K