MHB Integral - substitution method problem

Click For Summary
The integral \(\int \frac{x^{2}+1}{x^{4}+1}dx\) poses challenges due to incorrect initial substitutions. One user points out that \(x^4 + 1\) cannot be factored as \((x^2 + 1)(x^2 - 1)\) and suggests a correct factorization leading to a new approach. The discussion includes methods involving trigonometric substitution and partial fractions to simplify the integral. Users share various techniques, including completing the square and using complex numbers, to arrive at a solution. The conversation emphasizes the importance of recognizing appropriate substitution methods for solving integrals effectively.
Yankel
Messages
390
Reaction score
0
Hello all

I am working on this integral

\[\int \frac{x^{2}+1}{x^{4}+1}dx\]Now, I have tried this way:

\[u=x^{2}+1\]

after I did:

\[\int \frac{x^{2}+1}{\left ( x^{2}+1 \right )\left ( x^{2}-1 \right )}dx\]

But I got stuck, I got:

\[\frac{1}{2}\cdot \int \frac{1}{u\sqrt{u-1}}dx\]

I thought of making another substitution, but I tried and failed. Help required :confused:
 
Physics news on Phys.org
Yankel said:
Hello all

I am working on this integral

\[\int \frac{x^{2}+1}{x^{4}+1}dx\]Now, I have tried this way:

\[u=x^{2}+1\]

after I did:

\[\int \frac{x^{2}+1}{\left ( x^{2}+1 \right )\left ( x^{2}-1 \right )}dx\]

But I got stuck, I got:

\[\frac{1}{2}\cdot \int \frac{1}{u\sqrt{u-1}}dx\]

I thought of making another substitution, but I tried and failed. Help required :confused:

Well first of all, [math]\displaystyle \begin{align*} x^4 + 1 \end{align*}[/math] is NOT equal to [math]\displaystyle \begin{align*} \left( x^2 + 1 \right) \left( x^2 - 1 \right) \end{align*}[/math].

I would try

[math]\displaystyle \begin{align*} x^4 + 1 &= x^4 + 2x^2 + 1 - 2x^2 \\ &= \left( x^2 + 1 \right) ^2 - \left( \sqrt{2} \, x \right) ^2 \\ &= \left( x^2 - \sqrt{2}\, x + 1 \right) \left( x^2 + \sqrt{2}\,x + 1 \right) \end{align*}[/math]

and so

[math]\displaystyle \begin{align*} \int{ \frac{x^2 + 1}{x^4 + 1}\,dx} &= \int{ \frac{x^2 - \sqrt{2}\,x + 1 + \sqrt{2}\,x}{ \left( x^2 - \sqrt{2}\,x + 1 \right) \left( x^2 + \sqrt{2}\,x + 1 \right) } \, dx} \\ &= \int{ \frac{1}{x^2 + \sqrt{2}\,x + 1} \,dx} + \sqrt{2} \int{ \frac{x}{ \left( x^2 - \sqrt{2}\,x + 1 \right) \left( x^2 + \sqrt{2}\,x + 1 \right) } \, dx} \\ &= \int{ \frac{1}{x^2 + \sqrt{2}\,x + \left( \frac{\sqrt{2}}{2} \right) ^2 - \left( \frac{\sqrt{2}}{2} \right) ^2 + 1 } \, dx} + \sqrt{2} \int{ \frac{x}{x^4 + 1} \, dx} \\ &= \int{ \frac{1}{ \left( x + \frac{\sqrt{2}}{2} \right) ^2 + \frac{1}{2} } \, dx} + \frac{\sqrt{2}}{2} \int{ \frac{2x}{ \left( x^2 \right) ^2 + 1 }\, dx} \end{align*}[/math]

Now in the first integral, let [math]\displaystyle \begin{align*} x + \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}\tan{(\theta)} \implies dx = \frac{\sqrt{2}}{2}\sec^2{(\theta)}\,d\theta \end{align*}[/math] and in the second integral let [math]\displaystyle \begin{align*} x^2 = \tan{(\phi)} \implies 2x\,dx = \sec^2{(\phi)}\,d\phi \end{align*}[/math] and the integrals become

[math]\displaystyle \begin{align*} \int{ \frac{1}{\left( x + \frac{\sqrt{2}}{2} \right) ^2 + \frac{1}{2} } \, dx} + \frac{\sqrt{2}}{2} \int{ \frac{2x}{ \left( x^2 \right) ^2 + 1 } \, dx} &= \int{ \frac{1}{ \left[ \frac{\sqrt{2}}{2} \tan{(\theta)} \right] ^2 + \frac{1}{2} } \cdot \frac{\sqrt{2}}{2}\sec^2{(\theta)}\,d\theta } + \frac{\sqrt{2}}{2} \int{ \frac{\sec^2{(\phi)}}{ \tan^2{(\phi)} + 1 } \, d\phi } \\ &= \frac{\sqrt{2}}{2} \int{ \frac{\sec^2{(\theta)}}{ \frac{1}{2}\tan^2{(\theta)} + \frac{1}{2} } \, d\theta} + \frac{\sqrt{2}}{2} \int{ \frac{\sec^2{(\phi)}}{\sec^2{(\phi)}}\,d\phi} \\ &= \sqrt{2} \int{ \frac{\sec^2{(\theta)}}{ \tan^2{(\theta)} + 1 } \, d\theta} + \frac{\sqrt{2}}{2} \int{ 1 \, d\phi } \\ &= \sqrt{2} \int{ \frac{\sec^2{(\theta)}}{\sec^2{(\theta)}}\,d\theta} + \frac{\sqrt{2}}{2} \phi + C_1 \\ &= \sqrt{2} \int{ 1\,d\theta } + \frac{\sqrt{2}}{2} \arctan{ \left( x^2 \right) } + C_1 \\ &= \sqrt{2} \, \theta + C_2 + \frac{\sqrt{2}}{2}\arctan{ \left( x^2 \right) } + C_1 \\ &= \sqrt{2} \arctan{ \left( \sqrt{2}\, x + 1 \right) } + \frac{\sqrt{2}}{2} \arctan{ \left( x^2 \right) } + C \textrm{ where } C = C_1 + C_2 \end{align*}[/math]
 
sorry, I thought it was minus when I tried, of course x^4+1 can't go the way I wrote it.

I have a basic question, how did you got to trigonometry ? did you move to polar system or something ? I don't get it. I mean, how did you know you need trigonometry in the first place ?

Thanks !
 
I would try this method but this is open for any correction

$\displaystyle \int\frac{x^2+1}{x^4+1}dx$

by letting

$\displaystyle u\,=\,x^2$
$\displaystyle du\,=\,2xdx$
$\displaystyle dx\,=\,\frac{du}{2x}$
$\displaystyle x\,=\,u^{\frac{1}{2}}$

can you continue..?
 
For practice try

$$\int \frac{1}{1+x^4}\,dx$$

$$\int \frac{1}{\sqrt[4]{1+x^4}}\, dx$$

$$\int \frac{x^2}{1+x^4}\, dx$$

They are a little bit tougher .

[*] By the way I have a way to solve the integral using complex numbers , the answer is nasty .
 
Using partial fractions, we may write:

$$\int\frac{x^2+1}{x^4+1}\,dx=\frac{1}{2}\int\frac{1}{x^2+\sqrt{2}x+1}+\frac{1}{x^2-\sqrt{2}x+1}\,dx$$

Completing the squares...

$$\int\frac{x^2+1}{x^4+1}\,dx=\frac{1}{2}\int\frac{1}{\left(x+\frac{1}{\sqrt{2}} \right)^2+\frac{1}{2}}+\frac{1}{\left(x-\frac{1}{\sqrt{2}} \right)^2+\frac{1}{2}}\,dx$$

Now, we may simply apply the formula:

$$\int\frac{du}{u^2+a^2}=\frac{1}{a}\tan^{-1}\left(\frac{u}{a} \right)+C$$

to get (after simplification):

$$\int\frac{x^2+1}{x^4+1}\,dx=\frac{1}{\sqrt{2}} \left(\tan^{-1}\left(\sqrt{2}x+1 \right)+ \tan^{-1}\left(\sqrt{2}x-1 \right) \right)+C$$
 
Yankel said:
sorry, I thought it was minus when I tried, of course x^4+1 can't go the way I wrote it.

I have a basic question, how did you got to trigonometry ? did you move to polar system or something ? I don't get it. I mean, how did you know you need trigonometry in the first place ?

Thanks !

It's a method known as trigonometric substitution. I suggest you read what Mark has written in post #8 of http://www.mathhelpboards.com/f10/integration-involving-trigonometric-substitutions-5545/.
 

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K