MHB Integral using integration by parts

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The discussion focuses on evaluating the expression $$\dfrac{(5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\int_0^1 (1-x^{50})^{101} dx}$$ using integration by parts. The integrals are defined as $I_1 = \int_{0}^1(1-x^{50})^{100}dx$ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx$. Through integration by parts, a relationship is established between $I_1$ and $I_2$, leading to the equation $n(2n+1)I_1 = (n(2n+1)+1)I_2$. The discussion concludes with a formula that connects these integrals, demonstrating a broader conjecture involving the beta function and gamma functions.
sbhatnagar
Messages
87
Reaction score
0
Evaluate: $$\dfrac{\displaystyle (5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\displaystyle \int_0^1 (1-x^{50})^{101} dx}$$

Hint:
Integration by Parts
 
Mathematics news on Phys.org
Interesting problem!

Here is a related conjecture I wish to prove when I have more time later:

$\displaystyle \frac{2n(2n+1)}{2}\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=\frac{2n(2n+1)}{2}+1$ where $\displaystyle n\in\mathbb{N}$
 
Let $I_1 = \int_{0}^1(1-x^{50})^{100}dx $ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx $.

$$\begin{align*} I_2 &= \int_{0}^1 (1-x^{50})^{101}dx \\ I_2 &= \left[x(1-x^{50})^{101}\right]_0^1-\int (x)(101)(-50x^{49})(1-x^{50})^{100}dx \quad \text{(Integration by Parts)}\\ I_2 &=0+(5050)\int x^{50}(1-x^{50})^{100}dx \\ I_2 &=-(5050)\int_0^1 (1-x^{50}-1)(1-x^{50})^{100}dx \\ I_2 &= -5050\int_{0}^1 (1-x^{50})^{101}dx+5050\int_0^1 (1-x^{50})^{100}dx \\ I_2 &= -5050I_2+5051I_1 \\ \frac{5050I_1}{I_2} &=5051\end{align*}$$
 
Following your lead:

Let:

$\displaystyle I_1=\int_0^1(1-x^n)^{2n}\,dx$

$\displaystyle I_2=\int_0^1(1-x^n)^{2n+1}\,dx$

where $\displaystyle n\in\mathbb{N}$

Using integration by parts, we find:

$\displaystyle I_2=\left[x(1-x^n)^{2n+1} \right]_0^1+n(2n+1)\int_0^1x^n(1-x^n)^{2n}\,dx$

$\displaystyle I_2=0-n(2n+1)\int_0^1(1-x^n-1)(1-x^n)^{2n}\,dx$

$\displaystyle I_2=n(2n+1)(I_1-I_2)$

$\displaystyle n(2n+1)I_1=\left(n(2n+1)+1 \right)I_2$

Hence:

$\displaystyle n(2n+1)\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=n(2n+1)+1$
 
$$\dfrac{\displaystyle \int_{0}^{1}(1-x^{n})^{2n} dx}{\displaystyle \int_0^1 (1-x^{n})^{2n+1} dx}$$

Here we can use the beta function but first we need to do a t-sub :

\text{Let : } x^n = t \,\,\, x = \sqrt [n]{t}\,\,\, \Rightarrow \,\, dx = \frac{1}{n}t^{\frac{1}{n}-1}

$$\text{So the integrand becomes : } \frac{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n} \, dt}{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n+1}\, dt}$$

Now using beta function :
I =\frac{\beta{(\frac{1}{n}, 2n+1)}}{\beta{(\frac{1}{n},2n+2)}}=\, \frac{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+1)}} }{\Gamma{(\frac{1}{n}+2n+1)}}}{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+2)}} }{\Gamma{(\frac{1}{n}+2n+2)}}}<br /> = \frac{\Gamma{(\frac{1}{n}+2n+2)}\Gamma{(2n+1)}}{ \Gamma {(\frac{1}{n}+2n+1)} \Gamma {(2n+2)}}= \frac {1}{n(2n+1)}+1
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top