MHB Integral using integration by parts

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
sbhatnagar
Messages
87
Reaction score
0
Evaluate: $$\dfrac{\displaystyle (5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\displaystyle \int_0^1 (1-x^{50})^{101} dx}$$

Hint:
Integration by Parts
 
Mathematics news on Phys.org
Interesting problem!

Here is a related conjecture I wish to prove when I have more time later:

$\displaystyle \frac{2n(2n+1)}{2}\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=\frac{2n(2n+1)}{2}+1$ where $\displaystyle n\in\mathbb{N}$
 
Let $I_1 = \int_{0}^1(1-x^{50})^{100}dx $ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx $.

$$\begin{align*} I_2 &= \int_{0}^1 (1-x^{50})^{101}dx \\ I_2 &= \left[x(1-x^{50})^{101}\right]_0^1-\int (x)(101)(-50x^{49})(1-x^{50})^{100}dx \quad \text{(Integration by Parts)}\\ I_2 &=0+(5050)\int x^{50}(1-x^{50})^{100}dx \\ I_2 &=-(5050)\int_0^1 (1-x^{50}-1)(1-x^{50})^{100}dx \\ I_2 &= -5050\int_{0}^1 (1-x^{50})^{101}dx+5050\int_0^1 (1-x^{50})^{100}dx \\ I_2 &= -5050I_2+5051I_1 \\ \frac{5050I_1}{I_2} &=5051\end{align*}$$
 
Following your lead:

Let:

$\displaystyle I_1=\int_0^1(1-x^n)^{2n}\,dx$

$\displaystyle I_2=\int_0^1(1-x^n)^{2n+1}\,dx$

where $\displaystyle n\in\mathbb{N}$

Using integration by parts, we find:

$\displaystyle I_2=\left[x(1-x^n)^{2n+1} \right]_0^1+n(2n+1)\int_0^1x^n(1-x^n)^{2n}\,dx$

$\displaystyle I_2=0-n(2n+1)\int_0^1(1-x^n-1)(1-x^n)^{2n}\,dx$

$\displaystyle I_2=n(2n+1)(I_1-I_2)$

$\displaystyle n(2n+1)I_1=\left(n(2n+1)+1 \right)I_2$

Hence:

$\displaystyle n(2n+1)\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=n(2n+1)+1$
 
$$\dfrac{\displaystyle \int_{0}^{1}(1-x^{n})^{2n} dx}{\displaystyle \int_0^1 (1-x^{n})^{2n+1} dx}$$

Here we can use the beta function but first we need to do a t-sub :

\text{Let : } x^n = t \,\,\, x = \sqrt [n]{t}\,\,\, \Rightarrow \,\, dx = \frac{1}{n}t^{\frac{1}{n}-1}

$$\text{So the integrand becomes : } \frac{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n} \, dt}{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n+1}\, dt}$$

Now using beta function :
I =\frac{\beta{(\frac{1}{n}, 2n+1)}}{\beta{(\frac{1}{n},2n+2)}}=\, \frac{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+1)}} }{\Gamma{(\frac{1}{n}+2n+1)}}}{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+2)}} }{\Gamma{(\frac{1}{n}+2n+2)}}}<br /> = \frac{\Gamma{(\frac{1}{n}+2n+2)}\Gamma{(2n+1)}}{ \Gamma {(\frac{1}{n}+2n+1)} \Gamma {(2n+2)}}= \frac {1}{n(2n+1)}+1
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top