MHB Integral using integration by parts

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The discussion focuses on evaluating the integral expression $$\dfrac{(5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\int_0^1 (1-x^{50})^{101} dx}$$ using integration by parts. The integrals are defined as $I_1 = \int_{0}^1(1-x^{50})^{100}dx$ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx$. Through integration by parts, the relationship between these integrals is established, leading to the conclusion that $$\frac{5050I_1}{I_2} = 5051$$. The discussion also extends to a generalized form involving $n$, where the relationship $$n(2n+1)\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=n(2n+1)+1$$ is derived.

PREREQUISITES
  • Understanding of integration by parts
  • Familiarity with definite integrals
  • Knowledge of the beta function and gamma function
  • Basic algebraic manipulation of integrals
NEXT STEPS
  • Study the properties and applications of the beta function
  • Learn advanced techniques in integration by parts
  • Explore the relationship between gamma functions and integrals
  • Investigate the implications of integral transformations in calculus
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of integration techniques and their applications in evaluating complex integrals.

sbhatnagar
Messages
87
Reaction score
0
Evaluate: $$\dfrac{\displaystyle (5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\displaystyle \int_0^1 (1-x^{50})^{101} dx}$$

Hint:
Integration by Parts
 
Mathematics news on Phys.org
Interesting problem!

Here is a related conjecture I wish to prove when I have more time later:

$\displaystyle \frac{2n(2n+1)}{2}\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=\frac{2n(2n+1)}{2}+1$ where $\displaystyle n\in\mathbb{N}$
 
Let $I_1 = \int_{0}^1(1-x^{50})^{100}dx $ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx $.

$$\begin{align*} I_2 &= \int_{0}^1 (1-x^{50})^{101}dx \\ I_2 &= \left[x(1-x^{50})^{101}\right]_0^1-\int (x)(101)(-50x^{49})(1-x^{50})^{100}dx \quad \text{(Integration by Parts)}\\ I_2 &=0+(5050)\int x^{50}(1-x^{50})^{100}dx \\ I_2 &=-(5050)\int_0^1 (1-x^{50}-1)(1-x^{50})^{100}dx \\ I_2 &= -5050\int_{0}^1 (1-x^{50})^{101}dx+5050\int_0^1 (1-x^{50})^{100}dx \\ I_2 &= -5050I_2+5051I_1 \\ \frac{5050I_1}{I_2} &=5051\end{align*}$$
 
Following your lead:

Let:

$\displaystyle I_1=\int_0^1(1-x^n)^{2n}\,dx$

$\displaystyle I_2=\int_0^1(1-x^n)^{2n+1}\,dx$

where $\displaystyle n\in\mathbb{N}$

Using integration by parts, we find:

$\displaystyle I_2=\left[x(1-x^n)^{2n+1} \right]_0^1+n(2n+1)\int_0^1x^n(1-x^n)^{2n}\,dx$

$\displaystyle I_2=0-n(2n+1)\int_0^1(1-x^n-1)(1-x^n)^{2n}\,dx$

$\displaystyle I_2=n(2n+1)(I_1-I_2)$

$\displaystyle n(2n+1)I_1=\left(n(2n+1)+1 \right)I_2$

Hence:

$\displaystyle n(2n+1)\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=n(2n+1)+1$
 
$$\dfrac{\displaystyle \int_{0}^{1}(1-x^{n})^{2n} dx}{\displaystyle \int_0^1 (1-x^{n})^{2n+1} dx}$$

Here we can use the beta function but first we need to do a t-sub :

\text{Let : } x^n = t \,\,\, x = \sqrt [n]{t}\,\,\, \Rightarrow \,\, dx = \frac{1}{n}t^{\frac{1}{n}-1}

$$\text{So the integrand becomes : } \frac{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n} \, dt}{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n+1}\, dt}$$

Now using beta function :
I =\frac{\beta{(\frac{1}{n}, 2n+1)}}{\beta{(\frac{1}{n},2n+2)}}=\, \frac{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+1)}} }{\Gamma{(\frac{1}{n}+2n+1)}}}{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+2)}} }{\Gamma{(\frac{1}{n}+2n+2)}}}<br /> = \frac{\Gamma{(\frac{1}{n}+2n+2)}\Gamma{(2n+1)}}{ \Gamma {(\frac{1}{n}+2n+1)} \Gamma {(2n+2)}}= \frac {1}{n(2n+1)}+1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
988
  • · Replies 14 ·
Replies
14
Views
3K
Replies
10
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K