Integral using integration by parts

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around evaluating integrals using integration by parts, specifically focusing on the integrals of the form $$I_1 = \int_{0}^1(1-x^{n})^{2n}dx$$ and $$I_2 = \int_{0}^1(1-x^{n})^{2n+1}dx$$. Participants explore various approaches, conjectures, and mathematical manipulations related to these integrals.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents an integral evaluation involving $$\dfrac{(5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\int_0^1 (1-x^{50})^{101} dx}$$ and hints at a conjecture.
  • Another participant proposes a conjecture related to the integrals $$I_1$$ and $$I_2$$ and outlines steps using integration by parts to derive relationships between them.
  • A subsequent reply extends the discussion by generalizing the integrals to $$I_1=\int_0^1(1-x^n)^{2n}\,dx$$ and $$I_2=\int_0^1(1-x^n)^{2n+1}\,dx$$, applying integration by parts to derive a new relationship.
  • Another participant suggests using a substitution to express the integrals in terms of the beta function, leading to a formulation involving gamma functions and their ratios.

Areas of Agreement / Disagreement

Participants present various approaches and conjectures, but there is no consensus on a definitive evaluation or conclusion regarding the integrals. Multiple competing views and methods are explored without resolution.

Contextual Notes

The discussion includes various assumptions and manipulations that may depend on specific definitions or conditions related to the integrals. Some steps in the derivations remain unresolved or are contingent on further exploration.

sbhatnagar
Messages
87
Reaction score
0
Evaluate: $$\dfrac{\displaystyle (5050)\int_{0}^{1}(1-x^{50})^{100} dx}{\displaystyle \int_0^1 (1-x^{50})^{101} dx}$$

Hint:
Integration by Parts
 
Physics news on Phys.org
Interesting problem!

Here is a related conjecture I wish to prove when I have more time later:

$\displaystyle \frac{2n(2n+1)}{2}\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=\frac{2n(2n+1)}{2}+1$ where $\displaystyle n\in\mathbb{N}$
 
Let $I_1 = \int_{0}^1(1-x^{50})^{100}dx $ and $I_2 = \int_{0}^1(1-x^{50})^{101}dx $.

$$\begin{align*} I_2 &= \int_{0}^1 (1-x^{50})^{101}dx \\ I_2 &= \left[x(1-x^{50})^{101}\right]_0^1-\int (x)(101)(-50x^{49})(1-x^{50})^{100}dx \quad \text{(Integration by Parts)}\\ I_2 &=0+(5050)\int x^{50}(1-x^{50})^{100}dx \\ I_2 &=-(5050)\int_0^1 (1-x^{50}-1)(1-x^{50})^{100}dx \\ I_2 &= -5050\int_{0}^1 (1-x^{50})^{101}dx+5050\int_0^1 (1-x^{50})^{100}dx \\ I_2 &= -5050I_2+5051I_1 \\ \frac{5050I_1}{I_2} &=5051\end{align*}$$
 
Following your lead:

Let:

$\displaystyle I_1=\int_0^1(1-x^n)^{2n}\,dx$

$\displaystyle I_2=\int_0^1(1-x^n)^{2n+1}\,dx$

where $\displaystyle n\in\mathbb{N}$

Using integration by parts, we find:

$\displaystyle I_2=\left[x(1-x^n)^{2n+1} \right]_0^1+n(2n+1)\int_0^1x^n(1-x^n)^{2n}\,dx$

$\displaystyle I_2=0-n(2n+1)\int_0^1(1-x^n-1)(1-x^n)^{2n}\,dx$

$\displaystyle I_2=n(2n+1)(I_1-I_2)$

$\displaystyle n(2n+1)I_1=\left(n(2n+1)+1 \right)I_2$

Hence:

$\displaystyle n(2n+1)\cdot\frac{\int_0^1(1-x^n)^{2n}\,dx}{\int_0^1(1-x^n)^{2n+1}\,dx}=n(2n+1)+1$
 
$$\dfrac{\displaystyle \int_{0}^{1}(1-x^{n})^{2n} dx}{\displaystyle \int_0^1 (1-x^{n})^{2n+1} dx}$$

Here we can use the beta function but first we need to do a t-sub :

\text{Let : } x^n = t \,\,\, x = \sqrt [n]{t}\,\,\, \Rightarrow \,\, dx = \frac{1}{n}t^{\frac{1}{n}-1}

$$\text{So the integrand becomes : } \frac{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n} \, dt}{\int^1_0 \,t^{\frac{1}{n}-1}\, (1-t)^{2n+1}\, dt}$$

Now using beta function :
I =\frac{\beta{(\frac{1}{n}, 2n+1)}}{\beta{(\frac{1}{n},2n+2)}}=\, \frac{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+1)}} }{\Gamma{(\frac{1}{n}+2n+1)}}}{\frac{\Gamma{(\frac{1}{n})\Gamma{(2n+2)}} }{\Gamma{(\frac{1}{n}+2n+2)}}}<br /> = \frac{\Gamma{(\frac{1}{n}+2n+2)}\Gamma{(2n+1)}}{ \Gamma {(\frac{1}{n}+2n+1)} \Gamma {(2n+2)}}= \frac {1}{n(2n+1)}+1
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K