MHB Integrate by Parts: Solving (xe^(2x))/((1+2x)^2)

  • Thread starter Thread starter annie122
  • Start date Start date
  • Tags Tags
    parts
Click For Summary
To integrate (xe^(2x))/((1+2x)^2), starting with the substitution w = 1 + 2x is recommended. This leads to a transformed integral that can be expressed in terms of w. One participant found that letting u = xe^(2x) simplified the process. Additionally, the quotient rule can be applied to derive the integral, showcasing its usefulness in certain scenarios. Ultimately, the discussion emphasizes various approaches to tackle the integration problem effectively.
annie122
Messages
51
Reaction score
0
how do i integrate
(xe^(2x))/((1+2x)^2)??
do i substitute 1 + 2x = w?

but if i do, how do i proceed from there?
 
Physics news on Phys.org
Re: integation by parts

I would definitely recommend $w=1+2x$ to begin. Linear substitutions like that cost you nothing, and could gain you quite a bit, as in this case. What is the resulting $w$ integral?
 
Re: integation by parts

i got 1/4(e^(w-1)/w - e^(w-1)/w^2))
but this doesn't look any easier... :/
 
Re: integation by parts

Here, let me type it out $\LaTeX$ style:
$$\frac{1}{4e} \int \frac{e^{w}(w-1)}{w^{2}} \, dw.$$
Is that what you have?
 
Re: integation by parts

yes, and i notice one technique you used, which is to take out the e^(-1), but i still don't see how i should go..

thx for the help btw :)EDIT:
actually i found the answer;
i had to let u = xe^(2x)
 
Last edited:
Re: integation by parts

Another way to solve this integral is to notice that
\begin{align*}
\frac{d}{dx} \frac{f(x)}{g(x)}&=\frac{g(x)\, f'(x)-f(x) \, g'(x)}{(g(x))^{2}} \\
\frac{f(x)}{g(x)}+C&=\int \frac{g(x)\, f'(x)-f(x) \, g'(x)}{(g(x))^{2}} \, dx.
\end{align*}
The quotient rule doesn't come in handy all that often, but when it does, it surprises you.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
935
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K