MHB Integrate √sin2x (sinx) - Limit 0 to pi/2

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral of √sin(2x) * sin(x) from 0 to π/2 simplifies to √2 times the integral of sin^(3/2)(x) * cos^(1/2)(x) over the same limits. This is evaluated using the beta function, resulting in the expression involving gamma functions. Ultimately, the solution is found to be π/4 after applying the complement formula. The discussion provides a detailed breakdown of the integration process and the mathematical transformations involved. The final answer to the integral is π/4.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Help Integrate {√sin2x} (sinx) ? (underoot sin2x) * sinx.. Limit (0 to pi/2)?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
We have: $$I:=\int_0^{\pi/2}\sqrt{\sin 2x}\sin x dx=\int_0^{\pi/2}\sqrt{2\sin x\cos x}\sin x dx=\sqrt{2}\int_0^{\pi/2}\sin^{3/2} x\cos^{1/2}x \; dx=\\
\sqrt{2}\frac{1}{2}B\left ( \frac{3/2+1}{2},\frac{1/2+1}{2} \right )=\frac{\sqrt{2}}{2}B\left ( \frac{5}{4},\frac{3}{4} \right )=\frac{\sqrt{2}}{2}\frac{\Gamma(5/4)\Gamma(1/4)}{\Gamma(2)}=\\
=\frac{\sqrt{2}}{2}\frac{(1/4)\Gamma((3/4)\Gamma(1/4)}{1!}=\frac{\sqrt{2}}{8}\Gamma(3/4)\Gamma (1/4)$$
Using the complement formula: $$I=\frac{\sqrt{2}}{8}\frac{\pi}{\sin (\pi/4)}=\frac{\pi}{4}$$
 

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
4K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K