Integrate source terms for test EM field in Kerr spacetime

Click For Summary
The discussion focuses on integrating source terms for electromagnetic fields in Kerr spacetime, specifically addressing the integral involving the source terms J_m and J_n. The user has provided detailed equations and context, including the Dirac delta function and the definitions of Δ and Σ. They mention that their calculations yield a cubic dependence on the variable r, while referenced literature indicates a quadratic dependence. The user has shared a Mathematica notebook and a PDF for further clarity and is seeking feedback on improving their calculations. The challenge of reconciling their results with those in the article remains unresolved.
Nitacii
Messages
4
Reaction score
0
Homework Statement
Calculate the source term ##^2J_{lm}## while knowing by integrating the known quantities.
Relevant Equations
$$ ^2J_{lm}(r) = \int_0^{2\pi} \int_0^\pi \frac{(r- i a \cos \theta)^2}{(r_+ - r_-)^2} \Sigma \ J_2 \;{}_{-1}\overline{Y}_{lm} \sin \theta d\theta d \phi$$
Hello, the Homework Statement is quite long, since it includes a lot of equations so I will rather post the as images as to prevent mistypes.

We need to find the integral
1696784403607.png

where
1696784412160.png

with

$$
J_m =(\sqrt{2}(r−ia\cos⁡θ))^{−1} i(r^2+a^2)\sin⁡(θ)j,
$$

$$
J_n = - \frac{a \Delta}{ 2 \Sigma} \sin(\theta )^2 j,
$$

$$
j = C \delta(r-r_0) \delta(\theta-\pi /2),
$$

where δ is the dirac delta function and with
$$
\Delta = r^2 - 2 M r + a^2
$$

$$
\Sigma = r^2 + a^2 \cos(\theta)^2
$$Finally ##(r_+,r_-,r_0,C,a,M)## are constant and ## {}_{-1}\overline{Y}_{l,m} = {}_{-1}\overline{Y}_{l,m}(\theta,\phi) ## are the Spin-Weighted Spherical harmonics.

We were also given the article Stationary electromagnetic fields around black holes. II. I understand that not everyone has access to it. But I've provided everything necessary here.

Since the calculation are very long I've prepared a Mathematica notebook. Which I've attached as pdf and is also (with working Mathematica notebook) at https://github.com/Zlabekma/homework.git).

Anyway, I don't finish the calculation there because my integrated source term is at least cubic in the variable ##r## but the one in the article is only quadratic in ##r##.
To be more specific in the article they state that ##{}^2J_{lm} \propto \Delta##
Comments on how to improve this post are very much appreciated. Thank you.
 

Attachments

Last edited:
Physics news on Phys.org
For clarity I finished the calculation using rules for Spin-Weighted Spherical harmonics and corrected a typo. I've modified the notebook and the pdf. But the problem of course remains.
 

Attachments

Last edited:
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 8 ·
Replies
8
Views
4K