Integrating $-3x\cos{4x}$: Step-by-Step

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the integration of the function \(-3x \cos{4x}\). Participants explore various methods for solving the integral, including integration by parts (IBP) and the method of undetermined coefficients. The conversation includes technical reasoning and mathematical expressions related to the integration process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a solution using integration by parts, detailing the steps and arriving at an expression for the integral.
  • Another participant proposes an alternative method using the method of undetermined coefficients, deriving a different expression for the integral and suggesting that minor errors may exist in the first participant's solution.
  • Some participants express confusion about signs and steps in the integration process, indicating a need for clarity.
  • A later reply suggests differentiating the function twice as a potential approach to find the integral, providing a detailed breakdown of the derivatives and their implications.
  • Multiple participants comment on the complexity of the steps involved, with some suggesting that fewer steps might reduce the likelihood of mistakes.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the various methods presented. There are competing views on the integration techniques and the accuracy of the derived expressions.

Contextual Notes

Some participants note specific issues with signs and the clarity of steps, indicating that there may be unresolved mathematical details in the integration process.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions
 
Last edited:
Physics news on Phys.org
Let's check your result using a different method (one you'll soon learn)...let:

$$\d{I}{x}=-3x\cos(4x)$$

We know the homogeneous solution will be a constant, $I_h=c_1$.

Using the method of undetermined coefficients, we will expect a particular solution of the form:

$$I_p=(Ax+B)\cos(4x)+(Cx+D)\sin(4x)$$

Differentiating w.r.t $x$, we obtain:

$$\d{I}{x}=(Ax+B)(-4\sin(4x))+A\cos(4x)+(Cx+D)(4\cos(4x))+C\sin(4x)=(4Cx+4D+A)\cos(4x)+(-4ax-4B+C)\sin(x)$$

Substituting that into our ODE, we find:

$$(4Cx+4D+A)\cos(4x)+(-4Ax-4B+C)\sin(x)=(-3x+0)\cos(4x)+(0x+0)\sin(4x)$$

Equating coefficients, there results:

$$4C=-3$$

$$4D+A=0$$

$$-4A=0$$

$$-4B+C=0$$

From this, we obtain:

$$(A,B,C,D)=\left(0,-\frac{3}{16},-\frac{3}{4},0\right)$$

Hence:

$$I_p=\left(0x-\frac{3}{16}\right)\cos(4x)+\left(-\frac{3}{4}x+0\right)\sin(4x)=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)$$

So, by the principle of superposition, the general solution is:

$$I=I_h+I_p=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)+c_1$$

It looks like you made only a couple of very minor slips. Can you spot them?
 
left $dx$ off

always get lost with signs

that was an interesting method

im going to do another IBP

I took a test thursday but ran out of time half way!
to much time figuring next step
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

Another option - start by differentiating your function twice

$\displaystyle \begin{align*} \frac{\mathrm{d}^2}{\mathrm{d}x^2}\,\left[ -3\,x\cos{ \left( 4\,x \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3 \cos{ \left( 4\,x \right) } \right] \\ &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12 \cos{ \left( 4\,x \right) } \end{align*}$

and since every derivative equation can be written in an equivalent form as an integral, as $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } \right] &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \end{align*}$ that means

$\displaystyle \begin{align*} \int{ \left[ 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \right] \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\cos{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{12\sin{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{ 12\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{48\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} - 3\cos{ \left( 4\,x \right) } + C_2 + 3\sin{ \left( 4\,x \right) } + C_3 &= 12\,x \sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\,x\cos{ \left( 4\,x \right) }\,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + 3\cos{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ -16 \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= \frac{3}{16}\,\sin{ \left( 4\,x \right) } - \frac{3}{4}\,x\sin{ \left( 4\,x \right) } + C \textrm{ where } C = -\frac{1}{16}\,\left( C_1 - C_2 - C_3 \right) \end{align*}$
 
lots of steps!
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

karush said:
lots of steps!

Less steps... and no mistakes with minus signs with a couple of sub steps... (Thinking)
$$I = \int -3x \cos{4x} \, dx
= -\frac 34 \int x\, d(\sin{4x})
\overset{\boxed{\int udv =uv -\int vdu}}= -\frac 34 \left(x\sin 4x - \int \sin 4x\,dx\right) \\
= -\frac 34 \left(x\sin 4x + \frac 14 \cos 4x\right) + C
= -\frac 34 x\sin 4x - \frac 3{16} \cos 4x + C
$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K