Integrating $-3x\cos{4x}$: Step-by-Step

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of the function $-3x\cos{4x}$ is computed using integration by parts (IBP) and the method of undetermined coefficients. The final result is $I = \frac{3}{4} x\sin{4x} - \frac{3}{16} \cos{4x} + C$. The discussion highlights the importance of correctly applying substitution and differentiating functions, as well as checking results through alternative methods. Participants also noted minor errors in sign and notation during the calculations.

PREREQUISITES
  • Integration by Parts (IBP)
  • Understanding of trigonometric integrals
  • Method of Undetermined Coefficients
  • Basic differential calculus
NEXT STEPS
  • Study advanced techniques in integration, focusing on Integration by Parts.
  • Learn about the Method of Undetermined Coefficients in solving differential equations.
  • Explore trigonometric identities and their applications in integration.
  • Practice solving integrals involving products of polynomials and trigonometric functions.
USEFUL FOR

Students and educators in calculus, particularly those focusing on integration techniques, as well as mathematicians interested in differential equations and trigonometric integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions
 
Last edited:
Physics news on Phys.org
Let's check your result using a different method (one you'll soon learn)...let:

$$\d{I}{x}=-3x\cos(4x)$$

We know the homogeneous solution will be a constant, $I_h=c_1$.

Using the method of undetermined coefficients, we will expect a particular solution of the form:

$$I_p=(Ax+B)\cos(4x)+(Cx+D)\sin(4x)$$

Differentiating w.r.t $x$, we obtain:

$$\d{I}{x}=(Ax+B)(-4\sin(4x))+A\cos(4x)+(Cx+D)(4\cos(4x))+C\sin(4x)=(4Cx+4D+A)\cos(4x)+(-4ax-4B+C)\sin(x)$$

Substituting that into our ODE, we find:

$$(4Cx+4D+A)\cos(4x)+(-4Ax-4B+C)\sin(x)=(-3x+0)\cos(4x)+(0x+0)\sin(4x)$$

Equating coefficients, there results:

$$4C=-3$$

$$4D+A=0$$

$$-4A=0$$

$$-4B+C=0$$

From this, we obtain:

$$(A,B,C,D)=\left(0,-\frac{3}{16},-\frac{3}{4},0\right)$$

Hence:

$$I_p=\left(0x-\frac{3}{16}\right)\cos(4x)+\left(-\frac{3}{4}x+0\right)\sin(4x)=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)$$

So, by the principle of superposition, the general solution is:

$$I=I_h+I_p=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)+c_1$$

It looks like you made only a couple of very minor slips. Can you spot them?
 
left $dx$ off

always get lost with signs

that was an interesting method

im going to do another IBP

I took a test thursday but ran out of time half way!
to much time figuring next step
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

Another option - start by differentiating your function twice

$\displaystyle \begin{align*} \frac{\mathrm{d}^2}{\mathrm{d}x^2}\,\left[ -3\,x\cos{ \left( 4\,x \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3 \cos{ \left( 4\,x \right) } \right] \\ &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12 \cos{ \left( 4\,x \right) } \end{align*}$

and since every derivative equation can be written in an equivalent form as an integral, as $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } \right] &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \end{align*}$ that means

$\displaystyle \begin{align*} \int{ \left[ 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \right] \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\cos{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{12\sin{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{ 12\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{48\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} - 3\cos{ \left( 4\,x \right) } + C_2 + 3\sin{ \left( 4\,x \right) } + C_3 &= 12\,x \sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\,x\cos{ \left( 4\,x \right) }\,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + 3\cos{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ -16 \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= \frac{3}{16}\,\sin{ \left( 4\,x \right) } - \frac{3}{4}\,x\sin{ \left( 4\,x \right) } + C \textrm{ where } C = -\frac{1}{16}\,\left( C_1 - C_2 - C_3 \right) \end{align*}$
 
lots of steps!
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

karush said:
lots of steps!

Less steps... and no mistakes with minus signs with a couple of sub steps... (Thinking)
$$I = \int -3x \cos{4x} \, dx
= -\frac 34 \int x\, d(\sin{4x})
\overset{\boxed{\int udv =uv -\int vdu}}= -\frac 34 \left(x\sin 4x - \int \sin 4x\,dx\right) \\
= -\frac 34 \left(x\sin 4x + \frac 14 \cos 4x\right) + C
= -\frac 34 x\sin 4x - \frac 3{16} \cos 4x + C
$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K