MHB Integrating $-3x\cos{4x}$: Step-by-Step

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integration of the function $-3x\cos{4x}$ is approached using integration by parts, resulting in the expression $I = \frac{3}{4} x\sin{4x} + \frac{1}{16}\cos{4x} + C$. An alternative method involving the method of undetermined coefficients is also discussed, leading to a general solution that includes a homogeneous and particular solution. Participants note minor errors in signs and suggest checking results through differentiation. The discussion emphasizes the complexity of the integration process and the importance of careful calculations. Overall, the integration techniques and verification methods are crucial for accurately solving such problems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions
 
Last edited:
Physics news on Phys.org
Let's check your result using a different method (one you'll soon learn)...let:

$$\d{I}{x}=-3x\cos(4x)$$

We know the homogeneous solution will be a constant, $I_h=c_1$.

Using the method of undetermined coefficients, we will expect a particular solution of the form:

$$I_p=(Ax+B)\cos(4x)+(Cx+D)\sin(4x)$$

Differentiating w.r.t $x$, we obtain:

$$\d{I}{x}=(Ax+B)(-4\sin(4x))+A\cos(4x)+(Cx+D)(4\cos(4x))+C\sin(4x)=(4Cx+4D+A)\cos(4x)+(-4ax-4B+C)\sin(x)$$

Substituting that into our ODE, we find:

$$(4Cx+4D+A)\cos(4x)+(-4Ax-4B+C)\sin(x)=(-3x+0)\cos(4x)+(0x+0)\sin(4x)$$

Equating coefficients, there results:

$$4C=-3$$

$$4D+A=0$$

$$-4A=0$$

$$-4B+C=0$$

From this, we obtain:

$$(A,B,C,D)=\left(0,-\frac{3}{16},-\frac{3}{4},0\right)$$

Hence:

$$I_p=\left(0x-\frac{3}{16}\right)\cos(4x)+\left(-\frac{3}{4}x+0\right)\sin(4x)=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)$$

So, by the principle of superposition, the general solution is:

$$I=I_h+I_p=-\frac{3}{16}\left(4x\sin(4x)+\cos(4x)\right)+c_1$$

It looks like you made only a couple of very minor slips. Can you spot them?
 
left $dx$ off

always get lost with signs

that was an interesting method

im going to do another IBP

I took a test thursday but ran out of time half way!
to much time figuring next step
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

Another option - start by differentiating your function twice

$\displaystyle \begin{align*} \frac{\mathrm{d}^2}{\mathrm{d}x^2}\,\left[ -3\,x\cos{ \left( 4\,x \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3 \cos{ \left( 4\,x \right) } \right] \\ &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12 \cos{ \left( 4\,x \right) } \end{align*}$

and since every derivative equation can be written in an equivalent form as an integral, as $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \,\left[ 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } \right] &= 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \end{align*}$ that means

$\displaystyle \begin{align*} \int{ \left[ 48\,x\cos{ \left( 4\,x \right) } + 12\sin{ \left( 4\,x \right) } + 12\cos{ \left( 4\,x \right) } \right] \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\cos{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{12\sin{ \left( 4\,x \right) } \,\mathrm{d}x} + \int{ 12\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{48\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} - 3\cos{ \left( 4\,x \right) } + C_2 + 3\sin{ \left( 4\,x \right) } + C_3 &= 12\,x \sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + C_1 \\ \int{ 48\,x\cos{ \left( 4\,x \right) }\,\mathrm{d}x} &= 12\,x\sin{ \left( 4\,x \right) } - 3\cos{ \left( 4\,x \right) } + 3\cos{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ -16 \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x } &= 12\,x\sin{ \left( 4\,x \right) } - 3\sin{ \left( 4\,x \right) } + C_1 - C_2 - C_3 \\ \int{ -3\,x\cos{ \left( 4\,x \right) } \,\mathrm{d}x} &= \frac{3}{16}\,\sin{ \left( 4\,x \right) } - \frac{3}{4}\,x\sin{ \left( 4\,x \right) } + C \textrm{ where } C = -\frac{1}{16}\,\left( C_1 - C_2 - C_3 \right) \end{align*}$
 
lots of steps!
 
karush said:
$\tiny{9.1}$
\begin{align*} \displaystyle
I&=\int -3x \cos{4x} \, dx = -3\int x \cos{4x} \, dx\\
\textit{uv substitution}\\
u&=x\therefore du=dx\\
dv&=\cos{4x} \, dx\therefore v=-\frac{\sin{4x}}{4}\\
\textit{now we have}\\
I&=3\left[\frac{x\sin{4x}}{4}
+\int\frac{\sin{4x}}{4} \, dx\right]\\
\textit{and finally}\\
I&=\frac{3}{4} x\sin{4x} +\frac{1}{16}\cos{4x}+C
\end{align*}

think this is ok but probably suggestions

karush said:
lots of steps!

Less steps... and no mistakes with minus signs with a couple of sub steps... (Thinking)
$$I = \int -3x \cos{4x} \, dx
= -\frac 34 \int x\, d(\sin{4x})
\overset{\boxed{\int udv =uv -\int vdu}}= -\frac 34 \left(x\sin 4x - \int \sin 4x\,dx\right) \\
= -\frac 34 \left(x\sin 4x + \frac 14 \cos 4x\right) + C
= -\frac 34 x\sin 4x - \frac 3{16} \cos 4x + C
$$
 

Similar threads

Replies
8
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
3
Views
1K