Integrating delta/Bessel function

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Function Integrating
Click For Summary
SUMMARY

This discussion focuses on integrating delta functions with Bessel functions in the context of solving partial differential equations. The primary equation presented is the representation of the delta function in polar coordinates, specifically u_t(r,\theta,0) = \delta(r - r_0, \theta - \theta_0). The discussion includes the derivation of coefficients C_{mn} and D_{mn} using integrals involving the delta function and Bessel functions \mathcal{J}_{mn}. The integration approach using DiracDelta in Mathematica is also explored, highlighting the need for correct syntax to avoid errors.

PREREQUISITES
  • Understanding of delta functions and their properties in mathematical analysis.
  • Familiarity with Bessel functions, specifically \mathcal{J}_{mn}.
  • Basic knowledge of polar coordinates and their applications in differential equations.
  • Experience with Mathematica for numerical integration and symbolic computation.
NEXT STEPS
  • Study the properties and applications of delta functions in mathematical physics.
  • Learn about Bessel function properties and their role in solving differential equations.
  • Explore advanced integration techniques in Mathematica, focusing on DiracDelta usage.
  • Investigate the application of Fourier series in solving partial differential equations.
USEFUL FOR

Mathematicians, physicists, and engineers working on problems involving partial differential equations, particularly those integrating delta functions with Bessel functions in polar coordinates.

Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat*}{3}
u_t(r,\theta,0) & = & \delta(\mathbf{x} - \mathbf{x}_0) & = & \delta(r - r_0, \theta - \theta_0)
\end{alignat*}
$$
\int_A\delta(\mathbf{x} - \mathbf{x}_0)f(r,\theta)dA = \int_0^{2\pi}\int_0^a\delta(r - r_0, \theta - \theta_0)f(r,\theta)rdrd\theta = f(\mathbf{x}_0)
$$

How do I solve this?
$$
u_t(r,\theta,0) = \frac{c}{a}\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right)z_{mn} \left[C_{mn}\cos m\theta + D_{mn}\sin m\theta\right] = \delta(r - r_0,\theta - \theta_0).
$$
 
Physics news on Phys.org
dwsmith said:
\begin{alignat*}{3}
u_t(r,\theta,0) & = & \delta(\mathbf{x} - \mathbf{x}_0) & = & \delta(r - r_0, \theta - \theta_0)
\end{alignat*}
$$
\int_A\delta(\mathbf{x} - \mathbf{x}_0)f(r,\theta)dA = \int_0^{2\pi}\int_0^a\delta(r - r_0, \theta - \theta_0)f(r,\theta)rdrd\theta = f(\mathbf{x}_0)
$$

How do I solve this?
$$
u_t(r,\theta,0) = \frac{c}{a}\sum_{n = 1}^{\infty} \sum_{m = 0}^{ \infty} \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right)z_{mn} \left[C_{mn}\cos m\theta + D_{mn}\sin m\theta\right] = \delta(r - r_0,\theta - \theta_0).
$$

$$
C_{mn} = \frac{2 \int_0^a \int_0^{2\pi} r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \cos m\theta d\theta dr}{z_{mn}ac\pi \mathcal{J}_{m+1}^2(z_{mn})} = \frac{2 \mathcal{J}_{mn} \left(z_{mn}\frac{r_0}{a}\right) \cos m\theta_0}{z_{mn}ac\pi \mathcal{J}_{m+1}^2(z_{mn})}\quad m\neq 0
$$
$$
C_{0n} = \frac{\int_0^a \int_0^{2\pi} r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{0n} \left(z_{0n}\frac{r}{a}\right)d\theta dr}{z_{0n}ac\pi \mathcal{J}_{1}^2(z_{0n})} = \frac{\mathcal{J}_{0n} \left(z_{0n}\frac{r_0}{a}\right) }{z_{0n}ac\pi \mathcal{J}_{1}^2(z_{0n})}
$$
$$
D_{mn} = \frac{2 \int_0^a \int_0^{2\pi} r \delta(r - r_0,\theta - \theta_0) \mathcal{J}_{mn} \left(z_{mn}\frac{r}{a}\right) \sin m\theta d\theta dr}{z_{mn}ac\pi \mathcal{J}_{m+1}^2(z_{mn})} = \frac{2 \mathcal{J}_{mn} \left(z_{mn}\frac{r_0}{a}\right) \sin m\theta_0}{z_{mn}ac\pi \mathcal{J}_{m+1}^2(z_{mn})}
$$
If this isn't correct, how do I integrate this with the delta?
I tried the below but it errored.
Code:
ClearAll["Global`*"]
z = Table[N[BesselJZero[m, n]], {n, 1, 20}, {m, 0, 5}];
a=c=1;
z // TableForm

A = Table[
   2*NIntegrate[
      DiracDelta[
        r - Subscript[r, 0], \[Theta] - Subscript[\[Theta], 0]]*r*
       Cos[m*\[Theta]]*BesselJ[m, z[[m, n]]*r/a], {\[Theta], 0, 
       2*Pi}, {r, 0, a}]/(Pi*c*a*BesselJ[m + 1, z[[m, n]]*r/a]^2), {m,
     1, 5}, {n, 1, 20}];
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
3K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K