MHB Integrating $\frac{x^2}{(1+x^2)^3}$ Over the Real Line

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Integrating Line
AI Thread Summary
The integral of the function $\frac{x^2}{(1+x^2)^3}$ over the real line can be evaluated using complex analysis, specifically by identifying a pole of order 3 at z=i in the upper half plane. The result of the integral is calculated as $\frac{\pi}{8}$. An alternative method suggested involves using a tangent substitution for integration. There is a question raised about whether this is a homework problem, indicating a potential academic context. The discussion emphasizes the use of both complex analysis and substitution techniques for solving the integral.
Fermat1
Messages
180
Reaction score
0
integrate $\frac{x^2}{(1+x^2)^3}$ over the real line
 
Mathematics news on Phys.org
Fermat said:
integrate $\frac{x^2}{(1+x^2)^3}$ over the real line

[sp]The function has in the upper half plane a pole of order 3 in z=i, so that is...

$\displaystyle \int_{- \infty}^{+ \infty} \frac{x^{2}}{(1 + x^{2})^{3}}\ d x = 2\ \pi i\ \lim_{z \rightarrow i} \frac{1}{2}\ \frac {d^{2}}{d z^{2}}\ \frac{z^{2}}{(z+i)^{3}} = \frac{\pi}{8}$[/sp]


Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]The function has in the upper half plane a pole of order 3 in z=i, so that is...

$\displaystyle \int_{- \infty}^{+ \infty} \frac{x^{2}}{(1 + x^{2})^{3}}\ d x = 2\ \pi i\ \lim_{z \rightarrow i} \frac{1}{2}\ \frac {d^{2}}{d z^{2}}\ \frac{z^{2}}{(z+i)^{3}} = \frac{\pi}{8}$[/sp]


Kind regards

$\chi$ $\sigma$

that is a way I had no really expected (although it is correct). What about a tan substitution
 
Fermat said:
integrate $\frac{x^2}{(1+x^2)^3}$ over the real line

Is this a homework problem?
Suspecting that this is a homework problem, I leave a hint, use $x=\tan\theta$. The resulting integral is straightforward.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top