Integrating $\int x^2\cos\left({\frac{x}{2}}\right)dx$ by parts

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The discussion focuses on integrating the function $\int x^2\cos\left({\frac{x}{2}}\right)dx$ using integration by parts (IBP). The participants correctly identify the components for IBP, setting $u = x^2$ and $dv = \cos\left(\frac{x}{2}\right)dx$. The integration process is detailed, showing the reduction of polynomial degree with each application of IBP, ultimately leading to the final result: $2x^2\sin\left({\frac{x}{2}}\right) + 8x\cos\left({\frac{x}{2}}\right) - 16\sin\left({\frac{x}{2}}\right) + C$. This method effectively combines polynomial and trigonometric integration techniques.

PREREQUISITES
  • Integration by Parts (IBP) technique
  • Understanding of polynomial and trigonometric functions
  • Basic knowledge of definite and indefinite integrals
  • Familiarity with the sine and cosine functions and their integrals
NEXT STEPS
  • Practice additional integration by parts problems with varying functions
  • Explore the reduction formula for integrals involving polynomials and trigonometric functions
  • Learn about the application of integration techniques in solving differential equations
  • Study the properties and applications of definite integrals in real-world scenarios
USEFUL FOR

Students, educators, and professionals in mathematics, particularly those focusing on calculus and integration techniques. This discussion is beneficial for anyone looking to enhance their skills in solving complex integrals involving polynomial and trigonometric functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\int x^2\cos\left({\frac{x}{2}}\right)dx$
$u={x}^{2}\ dv=\cos{\left(\frac{x}{2}\right)}dx$
$du=2x dx\ v=\int\cos\left({\frac{x}{2}}\right)dx=2\sin\left({\frac{x}{2}}\right)$

Integrat by parts, just seeing if getting started ok
 
Physics news on Phys.org
karush said:
$\int x^2\cos\left({\frac{x}{2}}\right)dx$
$u={x}^{2}\ dv=\cos{\left(\frac{x}{2}\right)}dx$
$du=2x dx\ v=\int\cos\left({\frac{x}{2}}\right)dx=2\sin\left({\frac{x}{2}}\right)$

Integrat by parts, just seeing if getting started ok

That is correct! Go on ...
 
$$uv-\int v \ du$$

So

$$2x^2\sin\left({\frac{x}{2}}\right)-4\int x \sin\left({\frac{x}{2}}\right)dx$$

Look like another round of parts..
 
Yup, you should notice that your original integrand consists of two functions, a polynomial and a trigonometric function. Each time you apply IBP, the degree of your polynomial should decrement by 1, eventually turning into a constant. Then, you will encounter either $\sin\left({\frac{x}{2}}\right)$ or $\cos\left({\frac{x}{2}}\right)$ which you can easily integrate.
 
$\int x\sin{\left(\frac{x}{2}\right)}du$
$u=x\ dv=\sin\left({\frac{x}{2}}\right)dx$
$du=dx\ v=\int\sin{\left(\frac{x}{2}\right)}dx=-2\cos{\left(\frac{x}{2}\right)}$
$4\left[-2x\cos\left({\frac{x}{2}}\right)-4\sin\left({\frac{x}{2}}\right)\right]$
 
$2x^2\sin\left({\frac{x}{2}}\right)+8x\cos\left({\frac{x}{2}}\right)-16\sin\left({\frac{x}{2}}\right)$
My final answer (I hope)
 
karush said:
$2x^2\sin\left({\frac{x}{2}}\right)+8x\cos\left({\frac{x}{2}}\right)-16\sin\left({\frac{x}{2}}\right)$
My final answer (I hope)

+ C
 
I seem to forget that to often...
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K