RedBarchetta
- 49
- 1
Homework Statement
<br /> \int {\frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }}ds} <br />
The Attempt at a Solution
This is a long one...First, I split the integrand into partial fractions and find the coefficients:
<br /> \begin{gathered}<br /> \frac{{2s + 2}}<br /> {{(s^2 + 1)(s - 1)^3 }} = \frac{{As + B}}<br /> {{s^2 + 1}} + \frac{C}<br /> {{s - 1}} + \frac{D}<br /> {{(s - 1)^2 }} + \frac{E}<br /> {{(s - 1)^3 }} \hfill \\<br /> 2s + 2 = (As + B)(s - 1)^3 + C(s^2 + 1)(s - 1)^2 + D(s^2 + 1)(s - 1) + E(s^2 + 1) \hfill \\<br /> 2s + 2 = (As + B)(s^3 - 3s^2 + 3s - 1) + C(s^4 - 2s^3 + 2s^2 - 2s + 1) + D(s^3 - s^2 + s - 1) + E(s^2 + 1) \hfill \\ <br /> \end{gathered} <br />