MHB Integration by Parts: $\int u\cos(u)\,\mathrm{d}u$

Click For Summary
The discussion focuses on solving the integral ∫ e^(2x) cos(e^x) dx using integration by parts. The initial approach involved setting u = e^x, but a participant pointed out that the u-substitution was not correctly applied, particularly with the differential. An alternative method was suggested, using u = cos(2x) and dv = e^(2x), leading to a clearer integration by parts setup. The final expression for the integral was derived, emphasizing the importance of proper substitution and the potential use of LaTeX for clarity in mathematical expressions. Overall, the conversation highlights the collaborative effort to solve the integral accurately.
brunette15
Messages
58
Reaction score
0
I have the following integral \int e(2x) cos(ex).

Let u = ex

Do integration by parts:
\int u2cos(u) du = u2sin(u) - \int (2usin(u) du

Do integration by parts again for \int (2usin(u) du:

\int (2usin(u) du = -2ucos(u) - \int -2cos(u) du

Putting it all together:

\int e(2x) cos(ex) = e(2x)sin(ex) - 2excos(ex) + 2sin(ex)
 
Physics news on Phys.org
Hi brunette15,

I don't think you u-substitution quite works, because $du=2e^{2x}$ that you haven't accounted for. Let's try another way.

Let $u=\cos(2x)$ and $dv = e^{2x}$. Then $$\int udv=uv-\int vdu$$.

What do you get when you try this?

Also, you might consider using $\LaTeX$. It takes a little time to learn but it makes your equations look very nice and clean. We can help you out if you are interested. :)
 
Jameson said:
Hi brunette15,

I don't think you u-substitution quite works, because $du=2e^{2x}$ that you haven't accounted for. Let's try another way.

Let $u=\cos(2x)$ and $dv = e^{2x}$. Then $$\int udv=uv-\int vdu$$.

What do you get when you try this?

Also, you might consider using $\LaTeX$. It takes a little time to learn but it makes your equations look very nice and clean. We can help you out if you are interested. :)

I see now! Thankyou! I have tried using latex however I am not too sure how to use it :/
 
brunette15 said:
I have the following integral \int e(2x) cos(ex).

Let u = ex

Do integration by parts:
\int u2cos(u) du = u2sin(u) - \int (2usin(u) du

Do integration by parts again for \int (2usin(u) du:

\int (2usin(u) du = -2ucos(u) - \int -2cos(u) du

Putting it all together:

\int e(2x) cos(ex) = e(2x)sin(ex) - 2excos(ex) + 2sin(ex)

If your integral is $\displaystyle \begin{align*} \int{ \mathrm{e}^{2x}\cos{ \left( \mathrm{e}^x \right) } \,\mathrm{d}x} \end{align*}$, write it as $\displaystyle \begin{align*} \int{ \mathrm{e}^x\cos{ \left( \mathrm{e}^x \right) } \,\mathrm{e}^x\,\mathrm{d}x} \end{align*}$ and then let $\displaystyle \begin{align*} u = \mathrm{e}^x \implies \mathrm{d}u = \mathrm{e}^x\,\mathrm{d}x \end{align*}$, giving $\displaystyle \begin{align*} \int{ u\cos{ (u)}\,\mathrm{d}u} \end{align*}$. Now you can use Integration by Parts.
 

Similar threads

Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K