soroban
- 191
- 0
I was taught integration formulas like these:
. . \int\frac{du}{u^2-a^2} \;=\;\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right|+C . **
It took up only one brain cell and it saved me
the bother of Partial Fractions (every time).I was taught: .\int\frac{du}{u^2+a^2} \;=\;\tfrac{1}{a}\arctan(\tfrac{u}{a})+C
So that: .\int\frac{dx}{x^2+9} \;=\;\tfrac{1}{3}\arctan(\tfrac{x}{3})+CBut it seems that everyone nowadays is taught:
. . \int\frac{du}{u^2+1} \;=\;\arctan u + C
So that, if you are not given a "1" in there,
you must do some Olympic-level gymnastics.
\int\frac{dx}{x^2+9} \;=\;\int\frac{dx}{9(\frac{x^2}{9}+1)} \;=\;\tfrac{1}{9}\int\frac{dx}{(\frac{x}{3})^2+1}
Let u = \tfrac{x}{3} \quad\Rightarrow\quad dx \:=\:3\,du
Substitute: .\tfrac{1}{9}\int \frac{3\,du}{u^2+1} \;=\;\tfrac{1}{3}\arctan u + C
Back-substitute: .\tfrac{1}{3}\arctan(\tfrac{x}{3})+CAm I the only one who prefers doing one step
. . instead of eight?~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
**
By the way, if you've memorized that formula,
. . its sister-formula is easily derived.We have: .\int\frac{du}{u^2-a^2} \;=\;\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right|+C
Multiply by -1: .-1\int\frac{du}{u^2-a^2} \;=\;-\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right| + C
. . \int\frac{du}{a^2-u^2} \;=\;\frac{1}{2a}\ln\left|\frac{u-a}{u+a}\right|^{-1} + C
. . \int\frac{du}{a^2-u^2} \;=\;\frac{1}{2a}\ln\left|\frac{u+a}{u-a}\right| + C
. . \int\frac{du}{a^2-u^2} \;=\;\frac{1}{2a}\ln\left|\frac{a+u}{a-u}\right| + C