Integration involving trigonometric substitutions

Click For Summary

Discussion Overview

The discussion revolves around the integration of functions involving trigonometric substitutions. Participants are working through specific integral problems, sharing their approaches, and seeking validation for their solutions. The focus includes both the methodology of integration and the correctness of algebraic manipulations.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents their solution to the integral ∫(dx/x²-x+2) using trigonometric substitution and completing the square, but another participant points out an algebraic error in their completion of the square.
  • There is a correction regarding the second integral ∫[dx/(15+2x-x²)¹/²], with a participant suggesting a different approach involving trigonometric substitution.
  • Some participants discuss the choice of substitution and its relation to Pythagorean identities, with one participant asking for clarification on how a specific substitution was derived.
  • Another participant explains the rationale behind choosing a particular substitution to simplify the integral using trigonometric identities.
  • Multiple participants express uncertainty about the correctness of their answers and seek confirmation from others.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the initial solutions presented. There are competing views on the proper approach to the integrals, and several corrections and clarifications are made throughout the discussion.

Contextual Notes

Some participants' solutions depend on specific algebraic manipulations that may not be universally agreed upon. The discussion includes various methods of substitution that are not fully resolved, and assumptions about the correctness of algebraic steps are challenged.

Who May Find This Useful

This discussion may be useful for students and practitioners interested in integration techniques, particularly those involving trigonometric substitutions and the application of Pythagorean identities in calculus.

paulmdrdo1
Messages
382
Reaction score
0
Please tell me if i worked out the problem correctly.

1. ∫(dx/x2-x+2)

completing the square of the denominator i have,

∫[dx/(x-1)2+12]

a=1, u=x-1; du=dx

∫(du/a2+u2)

1/1*tan-1x-1/1 + c = tan-1x-1 + C -->> final answer

2. ∫[dx/(15+2x-x2)1/2]

∫[dx/(14-(x-1)2)1/2]

∫{dx/([(14)1/2]2-(x-1)2)}

a = (14)1/2; u = x-1; du = dx

= 1/(14)1/2*sin-1x-1/(14)1/2 + C --->>final answer

and P.S how to use that font that you are using?
 
Physics news on Phys.org
Re: Integration of inverse Trig functions

paulmdrdo said:
Please tell me if i worked out the problem correctly.

1. ∫(dx/x2-x+2)

completing the square of the denominator i have,

∫[dx/(x-1)2+12]

a=1, u=x-1; du=dx

∫(du/a2+u2)

1/1*tan-1x-1/1 + c = tan-1x-1 + C -->> final answer
Method is right, algebra is wrong. In fact, $x^2-x+2 = \bigl(x-\frac12\bigr)^2 + \frac74$.

paulmdrdo said:
and P.S how to use that font that you are using?
To typeset those fonts you need to learn http://www.mathhelpboards.com/f26/math-help-boards-latex-guide-pdf-1142/.
 
Re: Integration of inverse Trig functions

my new answer to 2 is this 2/(7)1/2*tan-12x-1/(7)1/2

are my answers to 1 and 2 now correct?
 
Re: Integration of inverse Trig functions

In your first attempt at 2.) you completed the square incorrectly:

$$15+2x-x^2=16-(x-1)^2=4^2-(x-1)^2$$
 
Re: Integration of inverse Trig functions

1/4*sin-1x-1/4 + C --->> is this the correct answer for 1?

2/(7)1/2*tan-12x-1/(7)1/2 ---> answer for 2.

are they now correct? sorry for not typing my solution. I'm in a rush.
 
Last edited:
Re: Integration of inverse Trig functions

paulmdrdo said:
Please tell me if i worked out the problem correctly.

1. ∫(dx/x2-x+2)

completing the square of the denominator i have,

∫[dx/(x-1)2+12]

a=1, u=x-1; du=dx

∫(du/a2+u2)

1/1*tan-1x-1/1 + c = tan-1x-1 + C -->> final answer

2. ∫[dx/(15+2x-x2)1/2]

∫[dx/(14-(x-1)2)1/2]

∫{dx/([(14)1/2]2-(x-1)2)}

a = (14)1/2; u = x-1; du = dx

= 1/(14)1/2*sin-1x-1/(14)1/2 + C --->>final answer

and P.S how to use that font that you are using?

Since the OP has gotten the correct answer to Q1 and is very close to getting the correct answer to Q2, I will post how I would approach these problems, which involves trigonometric or hyperbolic substitutions.

Q1.

[math]\displaystyle \begin{align*} \int{ \frac{dx}{x^2 - x + 2}} &= \int{ \frac{dx}{ \left( x - \frac{1}{2} \right) ^2 + \frac{7}{4} } } \end{align*}[/math]

Now make the substitution [math]\displaystyle \begin{align*} x - \frac{1}{2} = \frac{\sqrt{7}}{2}\tan{(\theta)} \implies dx = \frac{\sqrt{7}}{2}\sec^2{(\theta)}\,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{ \frac{dx}{ \left( x - \frac{1}{2} \right) ^2 + \frac{7}{4} } } &= \int{ \frac{\frac{\sqrt{7}}{2}\sec^2{(\theta)}\,d\theta}{ \left[ \frac{\sqrt{7}}{2}\tan{(\theta)} \right] ^2 + \frac{7}{4} } } \\ &= \frac{\sqrt{7}}{2} \int{ \frac{\sec^2{(\theta)}\,d\theta}{\frac{7}{4}\tan^2{(\theta)} + \frac{7}{4}} } \\ &= \frac{\sqrt{7}}{2}\cdot \frac{4}{7} \int{\frac{\sec^2{(\theta)}\,d\theta}{\tan^2{( \theta )} + 1}} \\ &= \frac{2\sqrt{7}}{7} \int{ \frac{\sec^2{(\theta)}\,d\theta}{\sec^2{(\theta)}} } \\ &= \frac{2\sqrt{7}}{7}\int{1\,d\theta} \\ &= \frac{2\sqrt{7}}{7} \theta + C \\ &= \frac{2\sqrt{7}}{7}\arctan{\left[ \frac{2\sqrt{7}}{7}\left( x - \frac{1}{2} \right) \right] } + C \end{align*}[/math]

Q2.

[math]\displaystyle \begin{align*} \int{\frac{dx}{\sqrt{15 + 2x - x^2}}} &= \int{\frac{dx}{\sqrt{-\left( x^2 - 2x - 15 \right) } } } \\ &= \int{ \frac{dx}{\sqrt{-\left[ x^2 - 2x + (-1) ^2 - (-1)^2 - 15 \right] }}} \\ &= \int{ \frac{dx}{\sqrt{- \left[ (x - 1)^2 - 16 \right] }}} \\ &= \int{ \frac{dx}{\sqrt{16 - (x - 1)^2}}} \end{align*}[/math]

Now make the substitution [math]\displaystyle \begin{align*} x - 1 = 4\sin{(\theta)} \implies dx = 4\cos{(\theta)}\,d\theta \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} \int{\frac{dx}{\sqrt{16 - (x-1)^2}}} &= \int{\frac{4\cos{(\theta)}\,d\theta}{\sqrt{16 - \left[ 4\sin{(\theta)} \right] ^2 }}} \\ &= 4\int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{16 - 16\sin^2{(\theta)}}}} \\ &= 4\int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{16 \left[ 1 - \sin^2{(\theta)} \right] }}} \\ &= 4\int{\frac{\cos{(\theta)}\,d\theta}{\sqrt{16\cos^2{(\theta)}}}} \\ &= 4\int{\frac{\cos{(\theta)}\,d\theta}{4\cos{(\theta)}}} \\ &= \int{ 1\,d\theta} \\ &= \theta + C \\ &= \arcsin{\left[ \frac{1}{4} \left( x - 1 \right) \right] } + C \end{align*}[/math]
 
Re: Integration of inverse Trig functions

how did you know this substitution?
\begin{align*} x - \frac{1}{2} = \frac{\sqrt{7}}{2}\tan{(\theta)} \implies dx = \frac{\sqrt{7}}{2}\sec^2{(\theta)}\,d\theta \end{align*}

why is \begin{align*} x - \frac{1}{2} equal to \frac{\sqrt{7}}{2}\tan{(\theta)}\end{align*} ?

please tell me. i want to know different techniques.
 
Re: Integration of inverse Trig functions

Consider the Pythagorean identities:

$$\sin^2(\theta)+\cos^2(\theta)=1$$

$$\tan^2(\theta)+1=\sec^2(\theta)$$

$$1+\cot^2(\theta)=\csc^2(\theta)$$

You want to use a substitution that allows you to utilize one of these identities. In the problem to which you refer, the integrand is:

$$\frac{1}{\left(x-\frac{1}{2} \right)^2+\frac{7}{4}}$$

We should observe that either the second or third identity above will be suitable. Like Prove It, I would choose the third. And so we wish to have:

$$\left(x-\frac{1}{2} \right)^2=\frac{7}{4}\tan^2(\theta)$$

This way, the $$\frac{7}{4}$$ may be factored out, leaving us with an expression to which we may apply the third Pythagorean identity above. So, taking the positive root, we find::

$$x-\frac{1}{2}=\frac{\sqrt{7}}{2}\tan(\theta)$$

and differentiating, we find:

$$dx=\frac{\sqrt{7}}{2}\sec^2(\theta)\,d\theta$$

and now our integral is:

$$\frac{2}{\sqrt{7}}\int\frac{\sec^2(\theta)}{\tan^2(\theta)+1}\,d\theta$$

Using the Pythagorean identity, we find we have:

$$\frac{2}{\sqrt{7}}\int\frac{\sec^2(\theta)}{\sec^2(\theta)}\,d\theta=\frac{2}{\sqrt{7}}\int\,d\theta=\frac{2}{\sqrt{7}}\theta+C$$

Now we need to back substitute for $\theta$, and so we take:

$$x-\frac{1}{2}=\frac{\sqrt{7}}{2}\tan(\theta)$$

and solve for $\theta$:

$$\frac{2x-1}{\sqrt{7}}=\tan(\theta)$$

$$\theta=\tan^{-1}\left(\frac{2x-1}{\sqrt{7}} \right)$$

And now we may conclude:

$$\int\frac{dx}{x^2-x+2}=\frac{2}{\sqrt{7}}\tan^{-1}\left(\frac{2x-1}{\sqrt{7}} \right)+C$$
 
uhmm. i still could not see the relation of this to that identity that you use.
can you show me explicitly how would you arrive to this
\begin{align*} x - \frac{1}{2} equal to \frac{\sqrt{7}}{2}\tan{(\theta)}\end{align*}
 
  • #10
First of all, please use an equals sign "=" instead of writing "equals to".

Second, you are allowed to substitute in ANY function that you like. We make this choice because we know that the function chosen simplifies with the Pythagorean Identity, and we also know that this simplification is very similar (in fact, identical) to the derivative of the substituted function, which means it will cancel, leaving a VERY easy function to integrate in terms of the new variable.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K