Integration of √(1-x^2) with x=sinθ: Check Correctness and Simplification

  • Context: Undergrad 
  • Thread starter Thread starter askor
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

The integration of the function √(1 - x²) with the substitution x = sin(θ) is confirmed to be correct under the condition |x| ≤ 1. The steps involve transforming the integral into ∫cos²(θ)dθ, which simplifies to (1/2)sin⁻¹(x) + (1/2)x√(1 - x²) + C. For values of x outside this range, the integral becomes complex and requires the use of hyperbolic functions, specifically cosh and sinh, to evaluate. The discussion emphasizes the importance of verifying integration results through differentiation.

PREREQUISITES
  • Understanding of trigonometric identities and substitutions
  • Familiarity with integration techniques, particularly integration by substitution
  • Knowledge of hyperbolic functions and their properties
  • Ability to differentiate functions to verify integration results
NEXT STEPS
  • Learn about integration techniques involving trigonometric substitutions
  • Study hyperbolic functions and their applications in calculus
  • Explore the differentiation of integrals to confirm correctness
  • Investigate the implications of complex integrals when x > 1
USEFUL FOR

Mathematics students, calculus learners, and anyone interested in advanced integration techniques and verification methods.

askor
Messages
168
Reaction score
9
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
 
Physics news on Phys.org
askor said:
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
Yes, in case ##|x|\leq 1.##
 
fresh_42 said:
Yes, in case ##|x|\leq 1.##

Why ##|x|\leq 1.##?
 
askor said:
Why ##|x|\leq 1.##?
Otherwise, it won't be the sine of an angle.

The formula for ##|x|\geq 1## involves ##\cosh^{-1}## at least if the integral table on Wikipedia where I looked it up is correct.
 
  • Love
Likes   Reactions: malawi_glenn
If x > 1 the integral is i\int \sqrt{x^2 - 1}\,dx and x = \cosh u with dx = \sinh u\,du and \cosh^2 u - 1 =\sinh^2 u is simplest. If x < -1 then use x = -\cosh u instead.
 
askor said:
Does my below integration is correct?

##\int \sqrt{1 - x^2} \ dx##

Let ##x = \sin \theta##, then
##dx = \cos \theta \ d \theta##,
##\cos \theta = \sqrt{1 - x^2}##,
##\theta = \sin^{-1} (x)##

##\int \sqrt{1 - x^2} \ dx##
##= \int \left( \sqrt{1 - \sin^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \left( \sqrt{\cos^2 \theta} \right) \ \left( \cos \theta \ d\theta \right)##
##= \int \cos \theta \cos \theta \ d\theta##
##= \int \cos^2 \theta \ d\theta##
##= \int \frac{1 + \cos 2\theta}{2} \ d\theta##
##= \frac{1}{2} \int d\theta + \frac{1}{2} \int \cos 2\theta \ d\theta##
##= \frac{1}{2} \theta + \frac{1}{2} \frac{1}{2} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} \sin 2\theta + C##
##= \frac{1}{2} \theta + \frac{1}{4} 2 \sin \theta \cos \theta + C##
##= \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C##
##= \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C##

Does this correct?
One way to find out is to take the derivative. What does that give you?

-Dan
 
  • Like
Likes   Reactions: vanhees71
askor said:
Does this correct?

topsquark said:
One way to find out is to take the derivative. What does that give you?
@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).
 
  • Like
Likes   Reactions: PeroK and topsquark
Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?
 
Hello, anybody home? Can someone please answer my question?
 
  • Informative
Likes   Reactions: erobz
  • #10
askor said:
Hello, anybody home? Can someone please answer my question?

askor said:
Can I modify the result such as ##\theta = \cos^{-1} (\sqrt{1 - x^2})##,
so that the final result will be ##\frac{1}{2} \cos^{-1} (\sqrt{1 - x^2}) + \frac{1}{2} x \sqrt{1 - x^2} + C##?

Mark44 said:
@askor, this is something you should always do in an integration problem. If you differentiate your answer and get back to the original integrand, you know your work is correct (assuming you didn't make any mistakes in differentiating the answer).
https://www.wolframalpha.com/input?i=d/dx+((1/2)*(cos^{-1}+(root(1+-+x^2)+))+++(1/2)+*x+*root(1-x^2))=
 
  • Like
Likes   Reactions: topsquark
  • #11
What does it mean? I don't understand.
 
  • #12
What does what mean?
What don't you understand?
Have you differentiated your suggestion as recommended?
What did you mean in post #8?
Where are your calculations?
Do you know WolframAlpha?
Did you click the link?
What from the link didn't you understand?

Listen, you cannot come here and expect people to do your work or to guess what you might have meant.
 
  • Like
Likes   Reactions: topsquark
  • #13
Observe that for ##x \gt 1## the integrand is complex.
$$
I=\int \sqrt{1-x^2}dx=i\int \sqrt{x^2-1}dx
$$
If you want to go further with this; let ##x=\cosh(u)##, ##dx=\sinh(u)du##.
$$
\sqrt{\cosh^2(u) -1}=\sinh(u)
$$
$$
I=i\int \sinh^2(u)du
$$
$$
\sinh^2(u)=\frac{1}{2}(\cosh(2u)-1)
$$
$$
I=\frac{i}{2}\int (\cosh(2u)-1)du=\frac{i}{4}(\sinh(2u)-2u) + C
$$
$$
=\frac{i}{4}(\sinh(2\cosh^{-1}(x)) -2\cosh^{-1}(x)) + C
$$
$$
=\frac{i}{4}(\sinh(2\ln(x+\sqrt{x^2 -1})) -2\ln(x+\sqrt{x^2 -1})) + C
$$
I advise you not to be so petulant when people are trying to help you.
 
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K