I Integration trouble (integral over a 2-sphere)

  • I
  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Integration
etotheipi
There's an integral over a 2-sphere ##S## with unit normal ##N^a## within a hypersurface orthogonal to a Killing field ##\xi^a##$$F = \int_S N^b (\xi^a / V) \nabla_a \xi_b dA = \frac{1}{2} \int_S N^{ab} \nabla_a \xi_b dA, \quad N^{ab} := 2V^{-1} \xi^{[a} N^{b]}$$which follows because the Killing equation is ##\nabla_{a} \xi_b = \nabla_{[a} \xi_{b]}## and we can also write ##\xi^a N^b \nabla_{[a} \xi_{b]} = \xi^a N^b \delta^{[c}_{a} \delta^{d]}_b \nabla_c \xi_d = \xi^{[c} N^{d]} \nabla_c \xi_d##. The original integral is supposed to transform into$$F = \frac{-1}{2} \int_S \epsilon_{abcd} \nabla^c \xi^d$$but I don't see how yet. Can anyone provide a hint? Thanks. :smile:
 
Last edited by a moderator:
  • Like
Likes JD_PM, Twigg and Dale
Physics news on Phys.org
Did part of the last equation get lost to a typo? The final result is rank 2 (a and b are free) but the original integral is a scalar. Am I missing something?
 
As far as I can tell they're the same as in the book; the indices in this case are abstract, so I reckon the second should be understood as the integral of a 2-form over the submanifold.
 
Last edited by a moderator:
After some helpful discussions with @Twigg, here's a possible idea: first we will use that ##\nabla_a \xi_b = \nabla_{[a} \xi_{b]}##, and also use that the volume form ##\epsilon_{ab}## on the 2-sphere is totally antisymmetric, i.e. ##\epsilon_{ab} = \epsilon_{[ab]}##,\begin{align*}F = \frac{1}{2} \int_S N^{ab} \nabla_a \xi_b \mathrm{d}A &= \frac{1}{2} N^{ab} \nabla_{[a} \xi_{b]} \epsilon_{cd} \\

&= \frac{1}{2} \int_S N_{[ab]} \nabla^a \xi^b \epsilon_{[cd]} \\

&= \frac{1}{2} \int_S \nabla^a \xi^b \delta^{[e}_a \delta^{f]}_b \delta^{[g}_c \delta^{h]}_d N_{ef} \epsilon_{gh}

\end{align*}However, since ##\delta^{[e}_a \delta^{f]}_b \delta^{[g}_c \delta^{h]}_d = \frac{1}{4} \delta^{e}_a \delta^{f}_b \delta^{g}_c \delta^{h}_d = 6 \delta^{[e}_a \delta^{f}_b \delta^{g}_c \delta^{h]}_d##, this is simply\begin{align*}

F &= \frac{1}{2} \int_S \nabla^a \xi^b \cdot 6 N_{[ab} \epsilon_{cd]} \\

&= \frac{-1}{2} \int_S \nabla^a \xi^b \epsilon_{abcd} \\

\end{align*}where the last line follows because ##\epsilon_{abcd} = -6N_{[ab} \epsilon_{cd]}##
 
Last edited by a moderator:
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top