Integration trouble (integral over a 2-sphere)

  • Context: Undergrad 
  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Integration
Click For Summary
SUMMARY

The discussion centers on the transformation of an integral over a 2-sphere involving a Killing field and its associated normal vector. The integral is expressed as $$F = \int_S N^b (\xi^a / V) \nabla_a \xi_b dA$$ and is proposed to transform into $$F = \frac{-1}{2} \int_S \epsilon_{abcd} \nabla^c \xi^d$$. Participants clarify that the indices are abstract and the integral represents a scalar quantity, while also addressing potential typographical errors in the equations. The final derivation confirms that the transformation is valid, leading to the conclusion that the manipulation of the volume form and the Killing equation is crucial for the integral's evaluation.

PREREQUISITES
  • Understanding of differential geometry concepts, particularly integrals over manifolds.
  • Familiarity with Killing fields and their properties in Riemannian geometry.
  • Knowledge of tensor calculus, specifically the manipulation of rank-2 tensors.
  • Proficiency in the use of antisymmetric forms, particularly on 2-spheres.
NEXT STEPS
  • Study the properties of Killing fields in Riemannian geometry.
  • Learn about the integration of differential forms over manifolds.
  • Explore the implications of the Killing equation in the context of symmetries.
  • Investigate the role of volume forms and their antisymmetry in tensor calculus.
USEFUL FOR

Mathematicians, physicists, and students specializing in differential geometry, particularly those working with integrals over manifolds and symmetries in geometric contexts.

etotheipi
There's an integral over a 2-sphere ##S## with unit normal ##N^a## within a hypersurface orthogonal to a Killing field ##\xi^a##$$F = \int_S N^b (\xi^a / V) \nabla_a \xi_b dA = \frac{1}{2} \int_S N^{ab} \nabla_a \xi_b dA, \quad N^{ab} := 2V^{-1} \xi^{[a} N^{b]}$$which follows because the Killing equation is ##\nabla_{a} \xi_b = \nabla_{[a} \xi_{b]}## and we can also write ##\xi^a N^b \nabla_{[a} \xi_{b]} = \xi^a N^b \delta^{[c}_{a} \delta^{d]}_b \nabla_c \xi_d = \xi^{[c} N^{d]} \nabla_c \xi_d##. The original integral is supposed to transform into$$F = \frac{-1}{2} \int_S \epsilon_{abcd} \nabla^c \xi^d$$but I don't see how yet. Can anyone provide a hint? Thanks. :smile:
 
Last edited by a moderator:
  • Like
Likes   Reactions: JD_PM, Twigg and Dale
Physics news on Phys.org
Did part of the last equation get lost to a typo? The final result is rank 2 (a and b are free) but the original integral is a scalar. Am I missing something?
 
  • Like
Likes   Reactions: etotheipi
As far as I can tell they're the same as in the book; the indices in this case are abstract, so I reckon the second should be understood as the integral of a 2-form over the submanifold.
 
Last edited by a moderator:
  • Like
Likes   Reactions: Twigg
After some helpful discussions with @Twigg, here's a possible idea: first we will use that ##\nabla_a \xi_b = \nabla_{[a} \xi_{b]}##, and also use that the volume form ##\epsilon_{ab}## on the 2-sphere is totally antisymmetric, i.e. ##\epsilon_{ab} = \epsilon_{[ab]}##,\begin{align*}F = \frac{1}{2} \int_S N^{ab} \nabla_a \xi_b \mathrm{d}A &= \frac{1}{2} N^{ab} \nabla_{[a} \xi_{b]} \epsilon_{cd} \\

&= \frac{1}{2} \int_S N_{[ab]} \nabla^a \xi^b \epsilon_{[cd]} \\

&= \frac{1}{2} \int_S \nabla^a \xi^b \delta^{[e}_a \delta^{f]}_b \delta^{[g}_c \delta^{h]}_d N_{ef} \epsilon_{gh}

\end{align*}However, since ##\delta^{[e}_a \delta^{f]}_b \delta^{[g}_c \delta^{h]}_d = \frac{1}{4} \delta^{e}_a \delta^{f}_b \delta^{g}_c \delta^{h}_d = 6 \delta^{[e}_a \delta^{f}_b \delta^{g}_c \delta^{h]}_d##, this is simply\begin{align*}

F &= \frac{1}{2} \int_S \nabla^a \xi^b \cdot 6 N_{[ab} \epsilon_{cd]} \\

&= \frac{-1}{2} \int_S \nabla^a \xi^b \epsilon_{abcd} \\

\end{align*}where the last line follows because ##\epsilon_{abcd} = -6N_{[ab} \epsilon_{cd]}##
 
Last edited by a moderator:

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
911
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K